
 AI Interface Standards Committee

The 2003 AIISC Report

The 2003 Report of the IGDA's Artificial
Intelligence Interface Standards

Committee

Alexander Nareyek, Bjoern Knafla, Daniel Fu, Derek Long,

Christopher Reed, Abdennour El Rhalibi, and Noel S. Stephens

(eds)

Welcome to our committee's report of 2003, which covers the activities of the

committee from June 2002 to June 2003. The first section provides a general

introduction and overview while the following sections present details on the

committee's single working groups. Feel free to post questions, comments or

suggestions to our feedback forum.1

Sections:

• Preface

• Interface Formats

• Working Group on World Interfacing

• Working Group on Steering

• Working Group on Pathfinding

• Working Group on Finite State Machines

• Working Group on Rule-based Systems

• Working Group on Goal-oriented Action Planning

• Support Team

1 The current text is a PDF rendering (with minimal formatting) of the latest version of the report available on
the Wayback Machine - Internet Archive (https://archive.org/web/), the original report was located at
http://www.igda.org/ai/report-2003/report-2003.html

https://web.archive.org/web/20070709154337/http:/www.igda.org/ai/ai_committee.php
https://web.archive.org/web/20070709154337/http:/www.igda.org/ai/report-2003/report-2003.html
https://web.archive.org/web/20070709154337/http:/sourceforge.net/forum/forum.php?forum_id=183778
https://archive.org/web/
http://www.igda.org/ai/report-2003/report-2003.html
https://web.archive.org/web/20070709154337/http:/www.igda.org/

1. Preface

On June 17, 2002, our committee on standards for artificial intelligence interfaces

(AIISC) was officially launched within the International Game Developers

Association (IGDA). The committee's goals are to provide and promote interfaces

for basic AI functionality, enabling code recycling and outsourcing thereby, and

freeing programmers from low-level AI programming as to assign more resources

to sophisticated AI. Standards in this area may also lay grounds for AI hardware

components in the long run.

Especially because many institutions from the simulation & military sector are very

interested in our initiative, I want to stress right at the beginning that the initiative is

directed toward computer games (on PCs as well as console platforms), i.e., our goal

is not to provide interfaces for general artificial intelligence applications. While we

hope that our work will also be useful for other domains, computer games pose very

specific requirements on issues like available computing resources and goals, and

we will primarily direct our design decisions on optimizing the interfaces for the

computer-game domain.

Preparations for the committee started more or less with a roundtable at GDC

2002 to check the interest in such an initiative. The roundtable was very successful,

and I started organizing the establishment of the committee soon after. It turned out

to be an unexpectedly huge undertaking; my related e-mail folders contain far over

2000 individual e-mails until now.

The committee has about 65 members and is composed of multiple working groups,

which currently work on the following topics: World Interfacing, Steering,

Pathfinding, Finite State Machines, Rule-based Systems and Goal-oriented Action

Planning. An additional group on Decision Trees has recently been put on hold until

we have a stronger force to tackle this topic. Furthermore, we have a support team,

mostly composed of students, which do a great job in supporting the working groups

with summaries, documentation and so on. Overviews of the work of all these units

during the last year can be found in the following sections.

Every working group has a coordinator (and potentially also a co-coordinator) that

manages the group and makes sure that the work goes on. The coordinators and

myself represent the committee's steering committee, which focuses on

organizational and political work, may set up new or cancel existing working groups,

and decides on issues like membership approval.

Our work is coordinated via a project page at SourceForge. We mostly use the forum

features for discussions of the single working groups as well as the CVS file system

for documentation. This style of operation is far from perfect, and SourceForge's

forum features did not turn out to be the most convenient option. Despite these

https://web.archive.org/web/20070816225935/http:/www.ai-center.com/events/gdc-2002-roundtable/
https://web.archive.org/web/20070816225935/http:/www.ai-center.com/events/gdc-2002-roundtable/
https://web.archive.org/web/20070816225935/http:/sourceforge.net/projects/ai-standards/

problems, the discussions become more intense and useful every day. Not even

considering group-internal e-mail traffic, 1777 posts have been posted to our forums

as of now, with large increases every month.

Especially in the beginning, we faced many problems with respect to member

activity. Many people were very interested in participating but obviously did not

evaluate their available temporal resources. In consequence, we already had to

replace about one third of the initial members. This issue is still not fully overcome,

and we continue the process of replacing inactive members.

Pursuing a standardization goal, one is immediately confronted with fears of

impeding innovation, needless bureaucratic overhead and possible market-power

related goals. We are well aware of the potential drawbacks that can result from bad

interface standards, and also implemented measures to counter potential influence

from institutions with their own agenda, e.g., not allowing leading positions of the

committee to be filled with middleware representatives. It is to say that we seem to

be lucky until now, and we mostly have a very harmonious work atmosphere.

Besides pushing the standards issue, the committee discussions provide a great

learning experience for everyone.

In comparison to other standards in the area of AI, our approach is clearly oriented

toward a specific application. It seems to me that for many other AI standards

initiatives, the goal was not to enhance specific applications but to standardize

specific techniques that might be of use... somehow. I am honestly not sure whether

those approaches are useful at all, and whether many AI techniques today are at a

level of general applicability - without a relation to a specific application domain. In

contrast, application-oriented standardization initiatives, like OpenGL or DirectX in

the graphics domain, have been a huge success and led to a tremendous progress in

that area. Our "hands-on" application-oriented approach is also reflected in the

committee composition: Nearly half of the committee consists of game developers;

the other half being equally distributed between middleware representatives and

academics.

Creating a report like this is always a trade-off. We certainly want to keep the public

informed of our work and progress. On the other hand, our resources are limited, and

we would of course like to direct as much work as possible to the creation of the

interface standards. We have thus kept the report relatively short, and would like to

invite you to also have a look at the online information of our 2003 GDC roundtable

on AI Interface Standards: The Road Ahead. More than a hundred slides and many

comments on the discussions are available there. Our next larger presentation will

be at GDC 2004, where we hope to present and discuss some concrete drafts of the

standards.

Finally, if you are interested in joining the committee, we would be happy to receive

your application. Please follow our membership application information on the

https://web.archive.org/web/20070816225935/http:/www.ai-center.com/events/gdc-2003-roundtable/
https://web.archive.org/web/20070816225935/http:/www.ai-center.com/events/gdc-2003-roundtable/

internet. Unluckily, the page structure of the IGDA's internet presentation is changed

now and then. The safest way to locate our pages is thus to use the IGDA's main

page at http://www.igda.org as entry point.

I would like to thank everyone who contributed to our committee's progress and this

report. The committee is based on voluntary work and we would be nothing without

the altruistic support of our members and coordinators. Given the outrageous regular

workload in jobs of the game industry, this can hardly be appreciated enough.

Special thanks go to Jason Della Rocca, the program director of the IGDA, who

probably already has nightmares about e-mails from me coming in faster than he can

reply!

I am convinced that - if we really should succeed - our interfaces will represent a

giant step for game AI development and the field of artificial intelligence in general.

It is certainly not an easy task, but with our great team and excellent support by the

IGDA, our chances seem to be pretty good! See you at GDC 2004 for the

presentation of our first interface drafts!

Alexander Nareyek

(Committee Chairman)

June 17, 2003

Pittsburgh, PA, USA

https://web.archive.org/web/20070816225935/http:/www.igda.org/

2. Interface Formats

Soon after the committee was formed, we realized that we need a forum to discuss

our general approach and the way interfaces should be developed and specified.

About 200 posts are posted to the forum as of now; however, related discussions

sometimes also took over the forum of the working group on world interfacing.

Some details on the two main topics that were discussed are given in the following.

2.1. Architectural Infrastructure

One aspect that arose now and then was what type of units we are providing

interfaces for - agents vs. functions. A function library would be a standard API with

hard-wired function calls. The advantage is that this is a very efficient and can be

used independent of the game architecture. An agent-based approach, on the other

hand, would send and receive general messages, decoding and encoding them

internally. That approach is very flexible but requires an agent-based system

architecture with infrastructure like service registry, message passing etc.

There were very different points of view on which approach to adopt, and we

discussed the issue at our 2003 GDC roundtable. The preferences became very

obvious: All participants voted for a function library, no-one for the agent-based

solution, and about 15% were interested in an additional agent wrapper for the

function-based approach. Thus, our work will focus mainly on function libraries.

2.2. Specification

Our interface standards must be specified somehow, and the discussions on which

specification methods/languages to use quickly emerged. Nearly everyone agreed

that multiple levels should be supported, e.g., abstract ontology and XML levels, as

well as C/C++ interfaces. C/C++ reference implementations would also be most

useful. For the exact formalisms, however, we have given the working groups a bit

of freedom to experiment with what they find most useful. We will further pursue

this topic once the group's interface suggestions become more concrete.

We also discussed the issue at our 2003 GDC roundtable, and especially whether C

or C++ should be targeted. Interestingly, hardly anyone was interested in pure C,

while more than 50% of the participants voted for a pure C++ interface. A C

approach with a C++ wrapper was supported by 25%. We will consequently focus

more on C++ than on C.

https://web.archive.org/web/20070818022448/http:/www.ai-center.com/events/gdc-2003-roundtable/
https://web.archive.org/web/20070818022448/http:/www.ai-center.com/events/gdc-2003-roundtable/

3. Working Group on World Interfacing

Ten game AI developers and middleware vendors out of the games and military

oriented sector build the AI Interface Standards Committee's (AIISC) world

interfacing group. We are the central hub, coordinating ourselves with all other

groups to create standardized interfaces to interconnect the games AI, e.g., other

AIISC interface implementations, with the non-AI games world representation.

Christopher Reed took over the coordinator role from Michael van Lent due to his

time constraints last year and is now organizing the groups' work and moderates its

forum discussions.

Without any doubt, the world interfacing group is the most active discussing with

over 500 forum postings. Many of our arguments circle around the question what it

is exactly what is needed by a game world and AI connecting interface and how

and on which level to represent it, e.g., on a very concrete level or top-down from a

more abstract meta-level.

3.1. Goals for a World Interface Standard

Our primary goal is to provide a functional AI interface to any run-time simulated

game world.

Important requirements to realize include:

• language independence,

• architecture independence,

• data-driven design.

3.2. The Game World

What is the game world? The group has struggled with this question from the first

day of discussion to the present. The only game world component that is currently

in consensus is the "entity".

The game world is composed of entities.

3.2.1. Game World Entities

Though we don't have a concrete definition, examples of entities are easy to come

by. Doors, tables, chairs, weapons, ammo, bombs, grenades, missiles, clocks, and

characters are all common examples of entities in games. There are many different

classes of entities, and many different instances of these classes.

For example, in chess, there are six entity classes (King, Queen, Knight, Bishop,

Rook, Pawn). At the beginning of the game, there are 32 entity instances (16 on each

side); however, the number of instances changes as pieces are captured or promoted.

Each entity class has any number of member variables representing the state of the

entity. These variables are often used for concepts like health, position, velocity, size,

animation, and model. In chess, all the entities would have member variables for

their positions on the board (X, Y coordinates probably). The values of these

variables change for each instance when it is moved.

We are currently working on a language for building these entity classes from a

standard template.

3.3. AI from a World Interface Perspective

As with the definition of the world, our group has no official definition for AI and

very little consensus of what it involves. In fact, some of what follows may be too

recently introduced to really be considered in the consensus, but it's here to help

support the concepts that are. While the role of AI may seem intuitively obvious, the

only element in consensus is that AI "plays the game".

AI is the controlling force behind all non-human players.

3.3.1. What is a Player?

Non-human AI controlled players - or "players" for short in the following text - vary

drastically in shape and function from game to game, but they all have these elements

in common:

Objectives

Why the player is participating.

Senses

Describe what the player can see, hear, know, and generally sense.

Actions

What the player can do.

Playing the game then involves responding to senses by doing actions that further

the players objectives.

3.3.2. Objectives

There hasn't nearly been enough discussion on this topic to say much more about it

than the general principle, e.g., in chess the primary objective of the game is to

"Capture the enemy king".

3.3.3. Senses

We've talked in great detail about senses, how they work, and what they do. We have

had some trouble trying to come up with concepts that can work in any architecture.

We have established two types of senses:

Events (world push to player)

Events occur at a time in the game and are instantly delivered to players or

recorded for later perusal (or both). Events are not necessarily related to

entities, though they are often caused by entities.

Queries (player pull from world)

Queries occur when the player actively uses his available senses to examine

the state of the game. Queries are also not necessarily related to entities,

though they often are.

Examples for events and queries in First Person Shooters (FPS):

• an event may occur anytime a sound is played,

• a common query might be "Where is my enemy?"

Currently, the exact mechanics of sensory perception is still under debate, as it can

be affected by many factors:

1. existence of the sense, e.g., in many games there is no "hearing" (what is there

to "hear" in Chess?),

2. players abilities, e.g., even if "hearing" exists, not all players are able to do it,

or do it as well as each other.

3. state of the world. For example, even if a player can "hear" anything, sound

may not go through walls and closed doors to reach him.

3.3.4. Actions

Actions are the way a player does things in the game. There are two types of actions:

Actuators

These occur at a time in the game and are of a finite duration, e.g., in Chess,

an actuator may be "Move diagonal".

Effectors

Effectors occur continuously, applied at all times to the game state. In an FPS,

an effector may be "Aim at enemy".

Actions suffer similar problems as senses, not all players can do all actions, and even

if a player is technically able to execute an action, the state of the world may prevent

it. A further example may illustrate this: in Chess, a Bishop may be able to "Move

diagonal", but if it is blocked...

3.4. Interfacing between AI and the World

Though the group mostly agrees on these concepts, the particulars of where they

are defined, owned, registered, and created are still very much up in the air.

Questions of threads, and synchronous vs. asynchronous architectures have yet to

be worked out, although we are confident that eventually, we can make it work.

The further interaction with other working groups and their progress will help to

advance our work as well, providing more concrete requirements on functionality

for the world interface.

3.5. Group Members

Current members of the working group on world interfacing:

• Group coordinator: Christopher Reed - Raven Software / Activision

• Tom Barbalet - Noble Ape

• Axel Buendia - SpirOps

• Erwin Coumans - Havok Realtime Physics

• John Morrison - MAK Technologies, Inc.

• Jeff Orkin - Monolith Productions

• Doug Poston - Conitec

• Adam Russell - Pariveda

• Duncan Suttles - Magnetar Games

• Ian Wilson - iNAGO Inc / neon.ai

4. Working Group on Steering

AI game developers, game AI middleware producers, and interested academics form

the AI Interface Standards Committee's (AIISC) working group on steering. One of

the eight members holds the position of a coordinator, coordinating the groups'

discussions and work. Dave C. Pottinger was the first coordinator, but due to time

constraints, handed the job over to the current coordinator, Thaddaeus Frogley.

While no final interface has been decided on, the group had very productive periods

besides GDC'03, this years' E3, and many job-related deadlines of the members, and

produced far over 200 discussion contributions. To focus discussion, examples how

to apply steering techniques in games were often used. Papers of Marcin Chady and

Craig W. Reynolds provided a starting point how steering systems could be

architected and helped to develop a common vocabulary. Missing a precise

vocabulary can lead to confusion which has been experienced in some arguments,

oftentimes ending in the discovery that the different parties talked about the same

thing.

4.1. Goals for a Steering Interface Standard

The goal of the steering group of the AI Interface Standards Committee (AIISC) is

to define a standard interface to ease the integration of a games AI with a steering

system. A steering system is a system that proposes movements for agents based on

their local surrounding, i.e., using the information about the world delivered by their

senses. Therefore, concrete but programming language neutral interfaces will be

defined.

First, the steering group has defined what is and what isn't steering, and building

upon this, identified the main abstractions and concepts needed to analyse and

structure the process of steering an agent inhabiting a games world. This process was

guided by different examples, e.g., a scenario similar to "capture the flag".

4.2. What is Steering? What isn't Steering?

A steering system controls and implements agent movement, paying attention to

multiple goals like not to bump into walls and other agents, while pursuing or

evading specific agents, or trying to stay inside a group. It is used for:

• steering agents,

• weapon targeting,

• camera control,

• particle effects,

• etc.

Steering is reactive, non-deliberative, and based on the local environment

surrounding every single controlled steered entity. It needs to cope and interact with

static and dynamic game world objects in an agent's perceived neighbourhood.

Steering has nothing to do with:

• searching,

• planning,

• backtracking,

• puzzle-solving,

• or anything requiring global knowledge of the game world outside the agent's

sensed local neighbourhood.

A steering system cannot be expected to navigate a maze. That is the job of a

pathfinder (handled by the working group on pathfinding). Once such a

pathfinder/maze-solver outside of the steering system has laid out a path through the

maze, the agent's steering system can produce natural-looking motion along this path.

4.3. Abstract Concepts and Components of a

Steering System

Problems to solve defining a steering system to use in games are:

• integrate multiple, eventually conflicting steering goals,

• react to (potential) collisions with obstacles, hot/proximity regions, or other

agents,

• translate the steering into agent movement in the game world,

• integrating the steering system with other game engine components, e.g.,

physical simulations,

• allowing for game-specific extensions of the steering system,

• and so on.

Different examples were examined, like the already mentioned "capture the flag",

where one agent tries to reach the flag while avoiding obstacles and its hunters. The

hunting or enemy agents pursue the flag-seeker while avoiding collisions with other

hunters and obstacles. The scenario represented only a small part of "capture the

flag" but was and is very helpful in thinking about steering.

These examples gave an impression of the steering task's complexity and the need

to make it simple to combine steering with other AI techniques, which is an

important issue to keep in mind for potential standards.

The way chosen to solve these requirements was to create the steering interface as a

"grey box", not a black box. The interface user - the game AI developer - should be

able to change and adapt a system conforming to the interface standards to his

https://web.archive.org/web/20070816225500/http:/www.igda.org/ai/report-2003/pathfinding.html

individual needs while using an established steering foundation that is structured in

a way to keep the interface as simple as possible. To meet these needs, the (steering)

data to work on is standardized - not the algorithms that use it.

The steering interface standard will define a toolkit of steering-related objects that

are glued together through custom code written by the interface user to meet their

projects’ needs. This simplifies the task of specifying the interface by putting some

burden on the end user but won't impede what game developers want to do.

Analysing the steering domain, the following concepts and components describing

a steered agent have been identified:

Game world interface

Enables an agent to sense its local environment,

e.g., for preventing collisions or for retrieving

information about the direction that another

agent is facing in to approach it from behind.

Steering behaviours

They are reacting to the surrounding scene

provided by the world interface by generating

steering goals. Which steering behaviours to

use is decided by the game developer. He can

also provide his own behaviours. At run-time,

the arbitrator dynamically manages the

steering behaviours provided by the developer.

Arbitrators

An arbitrator integrates and combines the

steering goals produced by the steering

behaviours to create the final steering goal

intended for the actuator of the agent. The

interface user determines which, when and

how to use steering behaviours and their outputs by providing his own agent

steering arbitrator(s).

Internal information currency

The representation of the steering goals generated by the steering behaviours

and the arbitrators. Arbitrators and actuators receive and work on steering

goals.

https://web.archive.org/web/20070816225500/http:/www.igda.org/ai/report-2003/aiisc_steering_report_2003.html#world_interface
https://web.archive.org/web/20070816225500/http:/www.igda.org/ai/report-2003/aiisc_steering_report_2003.html#steering_behaviors
https://web.archive.org/web/20070816225500/http:/www.igda.org/ai/report-2003/aiisc_steering_report_2003.html#arbitrators
https://web.archive.org/web/20070816225500/http:/www.igda.org/ai/report-2003/aiisc_steering_report_2003.html#internal_information_currency

Actuators

Actuators convert a final steering goal into whatever is needed to propose

agent movement to the game.

Steering behaviours react to continuous changes of the environment. Furthermore,

the whole steering system of an agent can be controlled by the game logic, e.g.,

through dynamically changing the used steering behaviours, arbitrator(s) and the

actuator, or by modifying the states of the different components of an agent’s

steering system.

4.3.1. World Interface

Changes in the world state are propagated via the world interface to the steering

system. Every steered agent and its different steering behaviours perceive (agent and

steering behaviour) relevant entities in their local neighbourhood. A representation

of the world is needed that allows defining agents, their properties and the entities

building the environment. Especially the detection of collisions or of the possibility

of collisions must be provided by the world interface.

Typically, agents hold information about their bounding volume, position, mass,

linear and angular velocities, linear and angular accelerations, etc. The world is

represented through geometric primitives like circular or spherical bounds, convex

hulls, lines, or planes. This set of primitives should be extendable by user provided

primitives. Other agents and groups of them, obstacles, walls, vector flow fields,

paths, and so on, could influence an agent's steering.

Collision detection and testing interface is needed, for example, to find nearby

objects or objects that lie on a ray between two points, or to get the time of a potential

collision if an agent is moving further in its current direction. This interface - a hot

working group discussion topic - might be provided by the AIISC world interfacing

group. What to do with this information is decided by the steering behaviours.

4.3.2. Steering Behaviours

Steering behaviours are the key elements of a steering system. Typical behaviours

are:

• seek/flee (for static targets or threats),

• pursue/evade (for dynamic targets like another agent),

• obstacle avoidance,

• wandering around,

• arrival,

• wall following,

• path following,

https://web.archive.org/web/20070816225500/http:/www.igda.org/ai/report-2003/aiisc_steering_report_2003.html#actuators

• flow-field following, and so on.

Combined steering behaviours are for example leader following, queuing and

flocking.

They might be fed with the data of the agent they are belonging to and information

about their surrounding environment, or they might query the world interface by

themselves to get the data needed to do their job. In only working on their local

world data, steering behaviours are kind of "myopic".

By choosing the right set of steering behaviours, a game developer might be able to

achieve an emergent system behaviour that helps to avoid situations that need

backtracking or planning otherwise and would need to be solved by game

components other than the steering system.

Based on their sensed world neighbourhood and their agent's state, steering

behaviours produce "steering goals" consumed by arbitrators. Steering goals

generated by behaviours can potentially also be used as input or hints for other

steering behaviours. Steering goals express a behaviour-specific recommendation

how to move or change the movement of an agent.

4.3.3. Arbitrators

Arbitrators take the steering goals generated by the steering behaviours they are

connected to, handle conflicting steering goals and integrate them into the "final

steering goal" dedicated to the agent's actuator.

Because establishing a complex "doing-everything-ever-needed-for-arbitration"

solution doesn't seem feasible, the interface user should be able to plug in his own

arbitrator using a combination of a variety of provided or self-written arbitration

strategies. Plug-ins allow for different arbitration for different steering problems or

for different arbitration inside one single steering problem.

Typical approaches of arbitration include:

• (linear) weighting and blending of steering behaviours steering goals,

• discrete selection of just one steering goal,

• prioritizing goals,

• randomly selecting one steering goal,

or more complicated game-specific mechanisms.

The AIISC steering interface standardizes arbitration methods not by standardizing

mechanisms but by providing prototypes for integrators/arbitrators, standardizing

not the code itself but the data - steering goals - over which arbitration may work.

4.3.4. Internal Information Currency

Steering behaviours, arbitrators and actuators communicate via steering goals - the

internal information currency of the steering system. Steering goals encode agent

movement or movement-changes as recommended by the generating behaviours or

arbitrators. Their value type should be standardized and might be a vector-pair with

a mechanism to mark a vector as unnecessary, so arbitration or the actuator won't

care about it.

The decision to have a steering goal hold two vectors is mainly backed up by two

vectors being a super-set of just one, performance-optimization reasons, and the

need to specify the direction of motion separately from the view direction of an agent

in a 3D world. The vectors building a steering goal can also be seen as values

defining the linear and angular velocity by which the producing steering behaviour

wants the associated agent to move with.

However, until now no real consensus concerning the steering goal vector semantics

has been reached.

4.3.5. Actuators

The actuator of an agent takes the final steering goal delivered by an arbitrator.

Steering goals are a steering-system specific definition of movement that needn't

conform directly with the game-logic way of expressing entity or agent motion.

Therefore, the final steering goal is converted into a proposal for the game how the

agent should move, e.g., through linear and angular accelerations. It is up to the game

to decide what to do with the actuators output.

To allow for direct interfacing with the application and to create whatever is needed

by the game-logic coordinating the movement, e.g., a physical simulation

component, it is the game AI programmer who provides the actuator and its

interfacing with the non-steering systems of the game. The actuator offers a user

defined agent- or game-specific meaning to the final steering goal.

Possible outputs of the actuator might be: forces, impulses, velocities, accelerations,

displacement vectors or direct movement, that meet the games’ needs.

4.4. State of Work

Currently, the group is in a phase of brainstorming, collecting and discussing high-

level concepts. Nothing is implementation-specific or set in stone yet. Terms like

"steering behaviour" or "actuator" are just concepts and no classes or objects of a

programming language.

The litmus test of every steering interface will be test case implementations and its

use in real projects.

4.5. Group Members

Current members of the working group on steering:

• Group coordinator: Thaddaeus Frogley - Rockstar Vienna

• Marcin Chady - Mindlathe

• Philippe Codognet - University of Paris 6

• Mike Ducker - Lionhead Studios

• Leon C. Glover - Entropy Unlimited

• Daniel Kudenko - University of York, UK

• Craig W. Reynolds - Sony Computer Entertainment US R&D

• Adam Russell - Pariveda

4.6. Resource(s)

See References section.

5. Working Group on Pathfinding

The working group on pathfinding is combined out of eight members. Noel S.

Stephens coordinates the group, which is composed of various game AI developers,

middleware producers, academics and educators. He took over this role from Eric

Dybsand (who was the successor of Ian Frank). We posted 224 discussion

contributions to our forum so far, arguing about the best way to define an interface

for pathfinding.

5.1. Goals for Pathfinding Standards

Our preliminary focus/goal is to define the core terminology and techniques

associated with commonly used pathfinding algorithms and data structures.

Currently, our group is focusing on gathering this past year's collective work,

documenting it, and putting application towards the theories discussed.

5.2. Common Terminology

AI

For the purposes of this group's documents, when the term "AI" is used by

itself, it refers specifically to the pathfinding algorithm or agent.

Agent

An entity in a simulation. For the purposes of this group, an agent is the entity

(be it a character, vehicle, or whatever) which is attempting to pathfind.

Connection

A path between two nodes. Every node must have one or more connections

to another node in order to exist in the graph.

Explicit Graph

An explicit graph is one in which the graph is held in a data structure that

encapsulates the graph structure.

Graph

A representation of a terrain model made up of an arbitrary mesh of nodes

and connections.

Grid

A representation of the terrain in which all of the nodes have a fixed number

of connections in fixed directions.

Implicit Graph

An implicit graph is one in which the graph's structure is exposed through an

interface. It is more representationally powerful than an explicit graph.

Node

An atomic entry in the navigational graph. When the AI navigates to a node,

its destination is considered to be the centre of the node.

Pathfinding

This is the process of searching for waypoints that form a path, which can be

used by agents as a guide for movement through terrain and obstacles within

a virtual world.

Region

A collection of nodes. The region is a collection of "large scale" navigational

data such that the AI can use this to determine a larger path it needs to cover

or not cover in order to reach its destination.

5.3. High-Level Specification

The pathfinding group has been discussing several concepts in regard to storing and

retrieving data pertinent to that of the typical pathfinding algorithms. Thus far, we

have come up with a Graph, Node, Connection concept.

The Graph is the underlying container/descriptor for any given region.

Nodes are the sub-sections that break the graph into regions that are more

manageable. The nodes will hold navigational related information that the agents

can use to determine the most optimal path. The weighted information held within

the node is dynamically assigned to the node and directly affects the weight/cost of

the node.

Each node will be connected to another node to form a grid of nodes that the agents

can parse through in order to formulate the most optimal path. The connections will

also have a weighted value assigned to them and thus will have the ability to have

dynamically assigned navigational data members associated with them.

There will be the ability within both nodes and connections to register callback

methods that will be able to handle/over-ride weighted calculations. This allows

agents the ability to control how they view the Graph, Node, connection sets

uniquely to the agent itself. The idea is to have a series of container classes that have

the ability to have data members stored within them which defines the container

class itself in regards to pathfinding algorithms as well as have the ability to over-

ride fundamental pathfinding algorithms that will enable for a more flexible system.

As of recently, the pathfinding group has defined the first stage to achieve the goal

for the before mentioned pathfinding concepts. These three sub-groups within the

pathfinding group are:

• Terminology and Theory Documentation Group
• Graph, Node, Connection Set Class Construction Group
• Navigational Mesh File I/O Group

5.3.1. Terminology and Theory Documentation Group

The members of this group are responsible for documenting both terms and concepts

discussed throughout the pathfinding forums. The end result for this group is to

create a nicely formatted document that contains terms commonly used within the

discussions (with definitions) and documentation that the laymen mind might not be

familiar with as well as concepts discussed through the forums that the pathfinding

group agrees are pertinent to the standard said group is constructing.

This group should query the two other groups for any new terminology or concepts.

This group should not feel like they are liable in coming up with the terminology,

but rather will act as a conduit to organize and prepare the information discussed in

the pathfinding forums.

Members of the group:

• Lead: Miranda Paugh
• Additional support: Ian Frank

5.3.2. Graph, Node, Connection Set Class Construction Group

The members of this group are assigned the task to construct a series of classes that

correspond to the Graph, Node, Connection topology and theory discussed thus far

in the pathfinding group. The first stage of this task is to construct a simple Windows

application that will allow a user to construct a graph, create nodes within the graph,

and then create connections between the nodes.

The classes should be pure to their purpose and thus should not contain any elements

that require any Windows API support. Any external library support should be

contained in classes outside of the Graph, Node, Connection classes. The result

should be a series of generic classes that can be ported to any platform with little

effort.

https://web.archive.org/web/20070416022559/http:/www.igda.org/ai/report-2003/pathfinding.html#documentation_group
https://web.archive.org/web/20070416022559/http:/www.igda.org/ai/report-2003/pathfinding.html#class_construction_group
https://web.archive.org/web/20070416022559/http:/www.igda.org/ai/report-2003/pathfinding.html#navigational_mesh_group

Members of the Group:

• Lead: Mike Ducker
• Additional support: Ian Millington and Syrus Mesdaghi

5.3.3. Navigational Mesh File I/O Group

The members of this group are assigned the task to construct a set of classes/libraries

that can be used to read in a navigational mesh file from a specific format. The data

that gets read in should have a fairly simple set of access methods that will enable

access to the data read in from the file.

The members of this group need to keep in mind that there needs to be a layer

between the file I/O methods and the actual code/classes that handle storing and

retrieving the data. This will allow for portability later in the year. A good starting

example of this type of code could almost be borrowed directly from Game

Programming Gems 1 section 3.6 "Simplified 3D Movement and Pathfinding Using

Navigational Meshes".

Members of the Group:

• Lead: Stephane Maruejouls
• Additional support: Eric Dybsand

5.4. Design Decisions

Thus far, we have come up with the agreement that pathfinding is very unique based

on the game genre and demands. In order to provide the most flexible pathfinding

standard we will need to create class containers that can be defined externally yet

have methods that allow external systems to configure them for the specific

pathfinding requirements needed at the time. We have felt that there is no universal

means to pathfinding, yet there are similar traits and data sets that can be

configured/assigned to allow for typical internal algorithm (i.e. A*) use.

We have agreed that such a task will require refinement of the concepts, and before

we come up with an entire system, we need to come up with sub-systems first. Now

that we have a well-defined theory foundation, we have broken our group into sub-

groups with the assignments of either tracking/documenting new

concepts/terminology, creating a very fundamental Graph, Node, Connection class

set, and finally coming up with a means to testing our Graph, Node, Connection class

set (Navigational Mesh I/O).

It has been agreed upon to test our current theories through common application

before seeking further analysis or further depth to our suggested theories. Upon

completion of our first application stage, we will analyse our implementation and

discuss how we can better improve the fundamental concepts used as well as the

interface to said concepts.

5.5. Group Members

Current members of the working group on pathfinding:

• Group coordinator: Noel Stephens - Atari Games (Paradigm Division)

• Mike Ducker - Lionhead Studios

• Eric Dybsand - Glacier Edge Technology

• Ian Frank - Future University-Hakodate

• Stephane Maruejouls - MASA Group

• Syrus Mesdaghi - Full Sail Real World Education

• Ian Millington - Mindlathe

• Miranda Paugh - Magnetar Games

6. Working Group on Finite State Machines

To create standards interfaces for game related finite state machines - that is the

mission of the ten members of this AI Interface Standards Committee's (AIISC)

working group. Professions include game AI and non-game AI developers,

academics, consultants and AI middleware vendors. Nick Porcino manages the work

of the group in the role of its coordinator. Until now, we contributed around 180

postings to our forum.

6.1. Goals for a Finite State Machines Interface

Standard

The primary goal of the finite state machines (FSM) group is to define a standard

interface that facilitates integration of finite state machines with game engines. To

that end, our major goals have been the following:

1. identify how FSMs are commonly embedded in games,

2. define a common language to describe finite state machines,

3. define an XML description of FSMs for interoperability between tools,

4. define a C++ API whereby FSMs can be efficiently and easily interfaced with

other systems.

6.2. FSM Committee Motivation

Finite state machines are arguably the most popular technology in game AI

programming today. They are conceptually simple, efficient, easily extensible, and

yet powerful enough to handle a wide variety of situations.

The finite-state machine (or finite-state automaton) exists in its simplest form from

computational theory, defined as a set of states S, an input vocabulary I, and a

transition function T(s,i) mapping a state and an input to another state. The machine

has a single state designated as the start state, where execution begins, and zero or

more accepting states, where execution terminates.

Less abstractly, an FSM is a concise, non-linear description of how the state of an

object can change over time, possibly in response to events in its environment. The

implementation of FSMs in games always differs from the theoretical definition.

Some code is associated with each state so that as the object's state changes, its

behaviour changes accordingly. Moreover, the transition function is broken up and

its internal logic distributed among the states so that each state "knows" the

conditions under which it should transition to a different state.

FSMs are often depicted graphically using flowchart-like diagrams in which states

and transitions are respectively drawn as rectangles and arrows. Graphical

representations of FSMs are popular, so popular that the Unified Modelling

Language (UML) reserves one of its nine diagram types just for state machines.

Because game character behaviour can be modelled (in most cases) as a sequence of

different character "mental states" - where change in state is driven by the actions of

the player or other characters, or possibly some feature of the game world - game

programmers often find that finite state machines are a natural choice for defining

character AI. In an FSM-based behaviour, the states describe how the character will

act, and the transitions between states represent the "decisions" that the character

makes about what it should do next. This "decision-action" model has the advantage

of being straightforward enough to appeal to the non-programmers on the game

development team (such as level designers), yet still impressively powerful. FSMs

lend themselves to being quickly sketched out during design and prototyping, and

even better, they can be easily and efficiently implemented.

The FSM committee seeks to define a standard that captures the simple yet powerful

way in which FSMs can be put to use.

6.3. FSM Committee Progress

So far, the committee has worked on the first two phases, exploring how game

developers use FSMs, and reaching a consensus on a common language to describe

an FSM.

6.3.1. FSMs in Practice

Early on, we examined the ways in which FSMs were implemented in practice. We

determined that two common methods were "flat" and "hierarchical". By "flat" we

mean the standard way in which FSMs are thought of - as atomic states and

transitions between them. A "hierarchical" (or "nested") state refers to states that

encapsulate other FSMs. Thus, being in a "hierarchical state" really amounts to being

in a set of atomic states.

"Inherited" states are object-oriented implementations of states. This type of state

inherits all the functionality (and possibly transitions) of a pre-existing state but can

change its behaviour.

Another implementation distinction we uncovered was "polling" versus "event-

driven." Polling implementations have FSMs actively query states of the world when

executing transition logic. Event-driven approaches, by contrast, wait for the game

engine to signal some event. This event will drive state execution and transition logic.

Event-driven approaches are most efficient and have been the current focus.

6.3.2. Representing FSMs

As it turns out, there are already a number of existing pieces of work that implement

or depict finite state machines. For example, SourceForge hosts a number of FSM

projects, such as the generically-named Finite State Machine, a State Machine

Compiler, a Qt-based FSM called Qfsm, a Finite State Machine Language, and our

dear leader's project Fizzim.

In terms of authoring and depicting FSMs, we examined a number of graphical

methods, such as GraphViz and an emerging graph standard called GXL.

6.4. State of Work

Currently the FSM group is in a stage of discussing requirements on a common

language to describe an FSM. From there, we will prescribe an XML-based ontology

and game engine interface.

6.5. Group Members

Current members of the working group on finite state machines:

• Group coordinator: Nick Porcino - LucasArts Entertainment

• Daniele Benegiamo - AI42

• Sam Calis - Universal Interactive

• Scott Davis - Black Cactus Games

• Daniel Fu - Stottler Henke Associates

• Mark Gagner - WMS Gaming

• Ben Geisler - Raven Software / Activision

• Dave Kerr - Naturally Intelligent

• Linwood H. Taylor - University of Pittsburgh

• Darren Ward - Bits Studios

This section was written with the help of Ryan Houlette of Stottler Henke Associates.

https://web.archive.org/web/20070818232628/http:/sourceforge.net/projects/finsm/
https://web.archive.org/web/20070818232628/http:/sourceforge.net/projects/smc/
https://web.archive.org/web/20070818232628/http:/sourceforge.net/projects/smc/
https://web.archive.org/web/20070818232628/http:/sourceforge.net/projects/qfsm/
https://web.archive.org/web/20070818232628/https:/sourceforge.net/projects/fsmlang/
https://web.archive.org/web/20070818232628/http:/fizzim.sourceforge.net/
https://web.archive.org/web/20070818232628/http:/www.research.att.com/sw/tools/graphviz/
https://web.archive.org/web/20070818232628/http:/www.gupro.de/GXL/

7. Working Group on Rule-based Systems

In this report, we introduce the current work carried-out by the Artificial Intelligence

Interface Standards Committee (AIISC) working group on Rule-based Systems

(RBS).

Due to work-commitment of most of the members including the coordinator, the

group has started very slowly. Many points of discussion have been started without

having been concluded or reached any agreement. To allow a better progression of

the group toward its identified goal, a more clear strategy and distribution of tasks

will have to be defined, with each member of the group responsible of a specific task.

This scheme will be in place and monitored in the forthcoming weeks.

For now, we present some of the background concepts and issues discussed on the

aspects of specification, design and development of a Rule-based System for game

AI to implement challenging game agents (i.e. NPC). We are investigating the

components and possible architectures of RBS, and the different applications of

game AI in general and of RBS in particular, depending on game genres.

This is a preliminary report on the current work of the RBS group.

7.1. Goal

Programming game AI is one of the most challenging enhancements that a game

developer can implement. The real-time performance requirements of computer

game AI and the demand for human-like interactions, appropriate animation

sequences, and internal state simulations for populations of scripted agents have

impressively demonstrated the potential of academic AI research and game AI

technologies.

Many academic AI techniques have been used and are currently used to implement

game AI. These include, without being exhaustive: finite state

machines (FSM), decision trees (DT), pathfinding, steering, goal-oriented action

planning and rule-based systems (RBS).

Regardless of their differences, many concepts from academic AI can be

implemented in games.

To be believable, the AI in a game must simulate cognition, sense the environment

realistically, and act convincingly within that context. In defining game AI, the

programmer will have to code agent activity and behaviour so that characters appear

intelligent and respond realistically to perceived conditions and situations.

The aims of these pages are to introduce the work carried-out by the Artificial

Intelligence Interface Standard Committee (AIISC) working group on Rule-Based

Systems (RBS).

Rules Based Systems are comprised of a database of associated rules. Rules are

conditional program statements with consequent actions that are performed if the

specified conditions are satisfied.

The aims of the group are to discuss and develop a set of standards on RBS

applications and architectures suitable to games. This is a preliminary report on the

current work of the RBS group, and which will be followed-up by recommendation

and a proposal for a game-AI RBS standard in future reports.

7.2. Games Genres and AI

Many game genres have been created, and while they might be different in the aims,

the gameplay and the setting, they share some commonalities in term of game AI.

7.2.1. Action Games

Action games involve the player in the exploration of fantasy worlds in the form of

running, jumping, climbing or leaping with the goal of discovering the doorway or

exit into the next stage or level. Generally, these titles feature cute characters battling

a cast of "baddies" and often involve a simple plot such as rescuing a princess.

Platform games like Donkey Kong as well as maze games such as Pac-Man fall into

this category. Another game genre that can be considered as action games are

shooters.

In action game genre, it is in creating intelligent opponents that the most obvious

possibilities for integration of sophisticated AI arise. NPCs cooperating with the

player character (PC), is another area in which there is a real opportunity for further

application of sophisticated AI such as RBSs.

7.2.2. Adventure Games

Adventure games take players on a journey in which they visit strange lands, find

keys to unlock mysterious doors, and often they must gather inventory such as keys

and sometimes weapons to solve puzzles. The combination of certain inventory

items and clues received along the journey are the keys to moving on to hidden areas

to discover more mysteries. An overall story, sometimes of epic proportion, or

comedic intent is the drive of each small task.

Two interesting applications of AI and RBS to the genre are the creation of more

realistic and engaging NPCs and maintaining consistency in dynamic storylines.

7.2.3. Role Playing Games

Role-Playing games require players to take on the role of a person or group of people.

While role-playing is generally associated with sword and sorcery and fantasy, it can

take place in any setting or time. These games typically send players on a journey

where they can interact with other characters and attain new skills and abilities, often

by fighting battles.

The differences between RPGs and adventure games arise from the scope involved.

RPGs take place in far larger worlds and the player has more freedom to explore the

environment at their own pace. Also, underlying RPGs is some rule set stemming

from the original, and quite complex, Dungeons & Dragons rules.

The RPG format offers the same kind of challenges to the AI developer as the

adventure game.

7.2.4. Strategy Games

Strategy games require the player to take on a leadership role (general, king, god-

like figure, etc.) and oversee every detail of the provided scenario(s). Generally,

strategy games require the user to move and to deploy troops or units, to manage

resources and to attain set goals.

Two distinct classes of game have emerged from the strategy genre. Turn based

strategy (TBS) games involve each player taking their turn to move units, order

production, mount attacks and so on, one after another. The Civilization

(www.civ3.com) series is the definitive example of this kind of game. Real time

strategy (RTS) games, as the title suggests, take place in real-time with players

moving units, ordering production etc. in parallel. The Age of Empires

(www.ensemblestudios.com/) and Command & Conquer (westwood.ea.com) series,

along with Total Annihilation (www.cavedog.com), stand out as good examples of

this genre.

AI in strategy games needs to be applied both at the level of strategic opponents and

at the level of individual units. AI at the strategic level involves the creation of

computer opponents capable of mounting ordered, cohesive, well-planned and

innovative campaigns against the human player. At the unit level, AI is required in

order to allow a player's units to carry out the player's orders as accurately as possible.

Challenges at unit level include accurate path finding and allowing units a degree of

autonomy in order to be able to behave sensibly without the player's direct control.

In RPGs or RTSGs, rules can be used to program the behaviour of your own PCs or

units. For example, in Baldur's Gate you can specify the behaviour of the characters

in your group using a scripting language. This would have been easier using rules.

https://web.archive.org/web/20070816225041/http:/www.civ3.com/
https://web.archive.org/web/20070816225041/http:/www.ensemblestudios.com/
https://web.archive.org/web/20070816225041/http:/westwood.ea.com/
https://web.archive.org/web/20070816225041/http:/www.cavedog.com/

Rules can be used also to specify scenarios. For example, in most RTS games map

editors, you can describe a scenario by specifying rules applied to a map section (if

a number of units enter this section, then trigger this action).

7.2.5. Game-AI Behaviour

The sections above show some of the possible application for AI in game in general

and RBS in particular. These are the creation of interesting opponents, realistic and

engaging NPCs and maintaining consistency in dynamic storylines.

To help in making the game immersive and allow suspension of disbelief, the

creation of the NPCs must provide different types of behaviour. Two categories of

generic behaviour in NPCs are commonly used: reactionary and spontaneous.

NPCs behave in a reactionary manner whenever they are responding to a change in

their environment. If an enemy spots you and starts to run towards you and shoot,

then they have acted as a reaction to seeing you.

NPCs behave in a spontaneous manner when they perform an action that is not based

on any change in their environment. A NPC that decides to move from his standing

guard post to a walking sentry around the base has made a spontaneous action.

For more details Please see: Howland G, A Practical Guide To Building A Complete

Game AI, 1999.

7.2.6. SOAR-BOT Example

Example: SOAR-Quake, courtesy of J. Laird.

https://web.archive.org/web/20070816225041/http:/www.gamedev.net/reference/articles/article784.as
https://web.archive.org/web/20070816225041/http:/www.gamedev.net/reference/articles/article784.as

IF

 enemy visible and my health is < very-low-health-value (20%)

OR

 his weapon is much better than mine

THEN

 propose retreat

7.3. RBS Definitions

7.3.1. Introduction

One form of AI that can be used is a rule-based system.

Rule-based systems differ from standard procedural or object-oriented programs in

that there is no clear order in which code executes. Instead, the knowledge of the

expert is captured in a set of rules, each of which encodes a small piece of the

expert's knowledge.

Each rule has a left-hand side and a ride hand side. The left-hand side contains

information about certain facts and objects which must be true in order for the rule

to potentially fire (that is, execute).

Any rules whose left-hand sides match in this manner at a given time are placed on

an agenda. One of the rules on the agenda is picked (there is no way of predicting

which one), and its right-hand side is executed, and then it is removed from the

agenda. The agenda is then updated (generally using a special algorithm called

the RETE algorithm), and a new rule is picked to execute. This continues until there

are no more rules on the agenda.

7.3.2. Rule Based Systems Components

Rule-based systems consist of a set of rules, a working memory and an inference

engine. The rules encode domain knowledge as simple condition-action pairs. The

working memory initially represents the input to the system, but the actions that

occur when rules are fired can cause the state of working memory to change. The

inference engine must have a conflict resolution strategy to handle cases where more

than one rule is eligible to fire.

A rule-based system consists of:

• a set of rules,

• working memory that stores temporary data,

• inference engine.

The inference mechanisms that can be used by inference engines are:

• Backward Chaining:

o To determine if a decision should be made, work backwards looking

for justifications for the decision.

o Eventually, a decision must be justified by facts.

• Forward Chaining

o Given some facts, work forward through inference net.

o Discovers what conclusions can be derived from data.

7.3.3. Extensions to Rule-based Systems

Rule-based systems support formalisms with different level of expressiveness.

Examples of these include:

• propositional logic,

• first-order logic,

• events and temporal constraints,

• probability associated with rules,

• fuzzy logic,

• etc.

All of these can be used to provide better AIs, e.g., you can imagine a bot that hides

when it is being shot at. Then it waits for five seconds before trying to shoot back if

there is no other shooting and no incoming noise.

7.3.4. RETE Algorithm

A possible inference engine is the RETE Algorithm. The RETE Algorithm is widely

recognized as by far the most efficient algorithm for the implementation of rule-

based systems. It is the only algorithm whose efficiency is asymptotically

independent of the number of rules. Although a number algorithms implementing

production rules have been considered, based on actual, empirical evidence, the

RETE Algorithm is orders of magnitude faster than all published algorithms with

the exception of TREAT algorithm. RETE is usually several times faster than

TREAT for small numbers of rules with RETE's performance becoming increasingly

dominant as the number of rules increases.

The typical RBS has a fixed set of rules while the knowledge base changes

continuously. However, it is an empirical fact that, in most RBSs, much of the

knowledge base is also fairly fixed from one rule operation to the next. Although

new facts arrive and old ones are removed at all times, the percentage of facts that

change per unit time is generally fairly small. For this reason, the obvious

implementation for an RBS architecture is very inefficient. The obvious

implementation would be to keep a list of the rules and continuously cycle through

the list, checking each one's left-hand-side (LHS) against the knowledge base and

executing the right-hand-side (RHS) of any rules that apply. This is inefficient

because most of the tests made on each cycle will have the same results as on the

previous iteration. However, since the knowledge base is stable, most of the tests

will be repeated. You might call this the rules finding facts approach and its

computational complexity is exponential.

A very efficient method known is the RETE algorithm. It became the basis for a

whole generation of fast expert system shells: OPS5, its descendant ART, RETE++,

CLIPS, JESS, and ILOG-Rules.

For more information on RETE see:

• Forgy, C. L., "RETE: A fast algorithm for the many pattern/many object
pattern match problem". Artificial Intelligence, 19(1) 1982, pp. 17-37.

• Giarratano and Riley, Expert Systems: Principles and Programming, Second
Edition, PWS Publishing, Boston, 1993.

7.4. Specification

The aim is to propose a general game AI engine organized around the components

mentioned in the RBS definitions section. This should make the implementation of

NPCs easier by providing a suitable interface with the game-world, a common

inference engine and different knowledge base suitable for a large variety of games.

A summary of RBS components is below with possible choices:

7.4.1. Knowledge Representation

• Production Rules

• Frames

• Object Oriented Representation

7.4.2. Inference Algorithm

• RETE

• TREAT

7.4.3. System Architecture

• Centralized

• Multi-Agent

• Blackboard

7.4.4. RBS Game AI Cycle

The diagram below shows the "thinking" process.

7.4.5. Interface with Game World

The following architecture shows an example how an RBS could be integrated. Note

that the architecture is of course very dependent on what the final world interface

will look like.

7.5. Group Members

Current members of the working group on rule-based systems:

• Group coordinator: Abdennour El Rhalibi - Liverpool John Moores

University

• Jean-Louis Ardoint - ILOG

• Daniele Benegiamo - AI42

• Nathan Combs - BBN Technologies

• Hannibal Ding - Interserv Information Technique

• Clay Dreslough - Sports Mogul

• Frank Hunter - Adanac Command Studies

• Gerard Lawlor - Kapooki Games

• John Mancine - Human Head Studios

• Miranda Paugh - Magnetar Games

7.6. WG Appendix A: Concepts and Terminology

Blackboard architecture

A Blackboard Architecture is an AI solution where Knowledge for a domain

is shared between numerous KS (Knowledge Sources). Each KS represents

an expert bringing its own set of knowledge to the blackboard and uses the

knowledge published through the blackboard to build assumptions, make

deductions etc.

Condition-action rule

A condition-action rule, also called a production or production rule, is a rule

of the form:

if condition then action.

The condition may be a compound one using connectives like and, or, and not.

The action, too, may be compound. The action can affect the value of working

memory variables, or take some real-world action, or potentially do other

things, including stopping the production system. See also inference engine.

Conflict resolution

Conflict resolution in a forward-chaining inference engine decides which of

several rules that could be fired (because their condition part matches the

contents of working memory should actually be fired.

Conflict resolution proceeds by sorting the rules into some order, and then

using the rule that is first in that particular ordering. There are quite a number

of possible orderings that could be used.

Frames

Frames are a knowledge representation technique. They resemble an extended

form of record (as in Pascal and Modula-2) or struct (using C terminology) or

class (in Java) in that they have a number of slots which are like fields in a

record or struct, or variable in a class. Unlike a record/struct/class, it is

possible to add slots to a frame dynamically (i.e. while the program is

executing) and the contents of the slot need not be a simple value. There may

be a demon present to help compute a value for the slot.

Demons in frames differ from methods in a Java class in that a demon is

associated with a particular slot, whereas a Java method is not so linked to a

particular variable.

Heuristic

A heuristic is a fancy name for a "rule of thumb" - a rule or approach that

doesn't always work or doesn't always produce completely optimal results,

but which goes some way towards solving a particularly difficult problem for

which no optimal or perfect solution is available.

https://web.archive.org/web/20070816225041/http:/www.igda.org/ai/report-2003/aiisc_rule_based_systems_report_2003.html#inference_engine

Inference engine

A rule-based system requires some kind of program to manipulate the rules -

for example to decide which ones are ready to fire (i.e., which ones have

conditions that match the contents of working memory). The program that

does this is called an inference engine, because in many rule-based systems,

the task of the system is to infer something, e.g. a diagnosis, from the data

using the rules. See also match-resolve-act cycle.

Knowledge base

Collection of the data and rules that suitably represent the problem domain.

Match-Resolve-Act cycle

The match-resolve-act cycle is the algorithm performed by a forward-

chaining inference engine. It can be expressed as follows:

loop

1. match all condition parts of condition-action rules against working
memory and collect all the rules that match;

2. if more than one match, resolve which to use;
3. perform the action for the chosen rule until action is STOP or no

conditions match.

Step 2 is called "conflict resolution". There are a number of conflict resolution

strategies.

RETE

Algorithm used to optimize forward chaining inference engines by optimizing

time involved in recomputing a conflict set once a rule is fired.

Rule-based system

A rule-based system is one based on condition-action rules.

Search

Search is a prevalent metaphor in artificial intelligence. Many types of

problems that do not immediately present themselves as requiring search can

be transformed into search problems. An example is problem solving, which

can be viewed in many cases as search a state space, using operators to move

from one state to the next.

https://web.archive.org/web/20070816225041/http:/www.igda.org/ai/report-2003/aiisc_rule_based_systems_report_2003.html#match_resolve_act_cycle

Particular kinds of search are breadth-first search, depth-first search, and best-

first search.

Working memory

The working memory of a rule-based system is a store of information used by

the system to decide which of the condition-action rules is able to be fired.

The contents of the working memory when the system was started up would

normally include the input data - e.g. the patient's symptoms and signs in the

case of a medical diagnosis system. Subsequently, the working memory might

be used to store intermediate conclusions and any other information inferred

by the system from the data (using the condition-action rules).

7.7. WG Appendix B: Links and References

See References section.

8. Working Group on Goal-oriented Action

Planning

This group has been slow to coordinate activities, due to heavy work-load

commitments of its former coordinator, Ruth Aylett, and of its recently appointed

new coordinator, Derek Long. This report summarises the most important elements

of the discussion that has been pursued so far and outlines the directions that will be

explored in the medium term.

8.1. What is Planning?

Most of the discussion of the group has centred on the role of action planning in

games, and the problem of defining terms. Planning, actions and goals are all terms

that are used by different people in different ways within the group, resulting from

the diversity of backgrounds from game developers to academics. Furthermore, the

difference between action planning and other techniques for action-selection like

FSMs, or decision trees, was not always clear. General agreement has been reached

that goals are conditions that an agent desires to bring about and that actions are the

means that agents have to achieve these goals. Planning is the problem of assembling

a coherent programme of actions to achieve specified goals. In contrast to that, rule-

based systems, finite state machines, or decision trees represent hard-wired sets of

actions and correspond more to reactive, fixed plans to deal with specific situations.

Common drawbacks of these techniques are missing 'individualism', too shallow

goal hierarchies, repetitive failures, or other obvious FSM-like behaviours. The

advantage of goal-oriented action planning over these techniques is the ability to

provide more flexible and more diverse behaviours for NPCs, since plans are

constructed 'online' from atomic actions and adapted specifically to the current goal.

There are still important open questions in this overall framework: a planner might

need to work with abstractions of actions if it is to produce a plan that is robust to

possible changes in the world and fast enough to construct. For example, there is

little point planning a detailed programme of actions to, say, capture the enemy flag,

using actions at the level of move to position X, face direction D, extend right

arm and so on, since the opponent will be responding in a way that undermines much

of such a plan before it is executed. On the other hand, a plan at an abstract

level: deploy decoy move on left flank, deploy strike team in deep penetration around

right flank, on signal, send in sprint team with heavy cover in scattered

formation and so on, can be robust to responses by the opponent (that is, this plan

anticipates certain forms of response and can still be executed regardless of the

details of the response, provided that the anticipation is broadly valid).

Execution of a plan is then an interesting challenge in mapping the high-level

abstract actions into lower level executable steps. This might be achieved through

some sort of mapping to finite-state machine models of execution behaviours.

8.2. Talking to Planners

If we assume that the objective of a planner is to put together a coherent programme

of actions, there still remain the challenges of communicating to and from the

planner. A planner must be told the current state of the world (as it is known by the

agent planning) and it must know, or have access to, descriptions of the actions

available to the agent at the appropriate level of abstraction for the plan being sought.

It must also be told the goals. Generation of goals is non-trivial and there are many

questions about why certain goals might be adopted. Once a plan is constructed,

communicating the plan to the external executive is also a challenge. There must be

means to monitor the execution of a plan and the abstractions will make this harder

because it will make it difficult to know when an action is completed - the translation

of an abstract action into concrete steps must be flexible enough to account for

different possible states of the world. For example, when is the action of deploying

a decoy move completed? When some set of team members is in place? Where must

they be precisely to count as deployed? Must they have been detected? How can we

be sure that they are decoying the opponent?

One language that has been proposed for communicating with a planner is PDDL,

used in the academic planning community. There are many reasons why this is

probably inappropriate for specialised target domains such as in games, but speed is

obviously one crucial issue: there is no way that game time can be spent constructing

and parsing PDDL documents. The actions available to an agent in a particular game

domain will be hard-wired into the planning system for that game, in order to achieve

efficient performance. Of course, there might be a role for PDDL or something like

it in game development, to be compiled into dedicated planner machinery for a given

domain.

8.3. Planning Strategy

Planning in the academic community has traditionally been concerned with the

domain-independent task of constructing programmes of activity from primitive

action descriptions, using weak-heuristic search techniques. Much work on planning

has also considered more scripted activity such as hierarchical task network style

planning (HTN planning). In considering the ways in which planning can play a role

in games it is important to question what degree of flexibility is really sought and

what form of planning is really necessary. It is important that agents exhibit

intelligent goal-directed behaviour, but not necessarily that they are capable of

constructing near-optimal plans in all situations. Sensible default behaviours to enter

https://web.archive.org/web/20070816230952/http:/www.dur.ac.uk/d.p.long/competition.html

safe states from which deliberation can proceed to identify new plans might be just

as effective as an ability to re-plan from arbitrary initial states.

It is extremely unlikely that heavy-duty computation can be expended in planning,

so search intensive approaches are unlikely to find favour. Anytime algorithms

might be more promising, but there still needs to be a good performance guarantee

for time-to-first-plan. On the other hand, once a plan is in place and an agent is

pursuing it, there is likely to be some opportunity to continue to develop and extend

the plan. Thus, a good forward-planning strategy is likely to be more promising than

a backward-planning strategy, since it will generate actions for execution quickly

before completing the entire plan. The combinatorial explosion involved, however,

renders this less directed forward-planning approach often infeasible.

8.4. Plans for the Future

The group needs to progress these ideas, and this will commence with a short-term

activity to identify concrete scenarios in which planning can play a role, together

with a clear description of what would be a useful plan to have constructed in

examples of these scenarios. Once the role of plans and planning has been more

clearly identified, further activities will be focused on constructing the framework

for communication with a planner, with a view to clear separation of the roles of

planning, plan-dispatch, plan-execution monitoring and, possibly, re-planning.

8.5. Group Members

Current members of the working group on goal-oriented action planning:

• Group coordinator: Derek Long - University of Durham

• Co-coordinator: Ruth Aylett - University of Salford

• John Funge - iKuni Inc.

• Massimiliano Garagnani - The Open University

• Phil Goetz - Intelligent Automation

• John J. Kelly III - Model Software

• Craig Lindley - Zero-Game Studio, The Interactive Institute

• Ian Millington - Mindlathe

• Jeff Orkin - Monolith Productions

• Brian Schwab - Sony Computer Entertainment America

• R. Michael Young - North Carolina State University

9. Support Team

The AI Interface Standards Committee (AIISC) support team consists of ten students

enthused about game AI from all around the world. There are different characters in

the team, some of whom try to take the initiative whenever possible, and others who

prefer to be assigned to tasks explicitly. Last year, Paul-Etienne Belloncik held the

position of the group coordinator but has left the AIISC due to time constraints

founding his own game developing company (named "Unlikely Games"). Bjoern

Knafla was elected the next coordinator and builds the main communication link

between the committee chairperson Alexander Nareyek and the support team now.

Additionally, it is the coordinators task to try to distribute the workload onto all team

members.

Our forum discussions count 150 postings but most of the work is organized by

emailing team members or the AIISC working group coordinators. Being far

outnumbered by the other committee members - the experts - and all of us studying

actively, it is sometimes hard to deliver immediate support when asked for.

Nonetheless, we are striving to offer the best help possible.

9.1. Tasks

Support tasks involve:

• summarizing the discussions of the different AIISC working groups,

• collecting questions of experts and answers given in the AIISC forums into

so called "Expertly Asked Questions" (EAQ) documents,

• working into software, APIs or other standards (e.g., XML schemas or

OpenGL) seemingly useful for the experts and providing short reviews of

them,

• creating activity reports of all AIISC members,

• assisting in the creation of presentation slides and reports,

• helping with technical problems mostly concerning the usage

of SourceForge.net and accessing its CVS repositories,

• and having an open ear to all needs and problems that might occur in the daily

committee work, e.g., developing slide templates for conferences like GDC.

Every one of us monitors at least one committee discussion forum to react quickly

on support demands and to protocol the posted arguments in summaries. In general,

our role is not to participate actively in the experts' discussions (not to disturb them

with greenhorn talk) but sometimes it is very hard to hold our horses, i.e., when we

think that we could provide some expertise as well.

Until now, most discussion summaries were written by single members, but the

steadily growing number of postings won't be overcome this way. In the future, more

https://web.archive.org/web/20070816112930/http:/sourceforge.net/

and more group work will have to take place, mainly between the supporters

assigned to the same AIISC working group. All of us will need to dedicate more

time for the AIISC or more support team members are needed.

9.2. Motivation

We are proud to support the world’s best game AI experts and to learn from them at

the same time. The AIISC is a team, and we are helping to make a difference with

our support - and have fun besides, too. However, we aren't sure if all of the experts

(apart from some exceptions - mainly working group coordinators) really noticed

and utilized our hard work. Directly collaborating together with the AIISC working

group coordinators and experiencing their passion and patience helping us to

improve our work is a blast though.

9.3. Group Members

Current members of the support team:

• Stephen D. Byrne - Hiram College

• Alex J. Champandard - University of Edinburgh

• Ting Feng - Northeastern University

• Cengiz Gunay - University of Louisiana at Lafayette

• Daniel Hartrell - University of Toronto

• Alexander Hornung - RWTH Aachen

• Börje Karlsson - Universidade Federal de Pernambuco

• Bjoern Knafla - University of Bielefeld (currently elected group coordinator)

• Jayaraman Ranjith - International Institute of Information Technology

• Hugo da Silva Sardinha Pinto - Universidade Federal do Rio Grande do Sul

References

[1] Craig W. Reynolds. Steering Behaviors for Autonomous Characters. Game

Developers Conference (GDC), 1999. URL: http://www.red3d.com/cwr/steer/

gdc99/

[2] G. Howland. A Practical Guide to Building a Complete Game AI: Volume I.

Gamedev.net, 1999. URL: https://www.gamedev.net/articles/programming/

artificial-intelligence/a-practical-guide-to-building-a-complete-game-a-r784/

[3] G. Howland. A Practical Guide to Building a Complete Game AI: Volume II.

Gamedev.net, 1999. URL: https://www.gamedev.net/articles/programming/

artificial-intelligence/a-practical-guide-to-building-a-complete-game-a-r785/

[4] John E. Laird and John C. Duchi. Creating human-like Synthetic Characters with

Multiple Skill Levels: A Case Study Using the SOAR Quakebot. AAAI 2000

Fall Symposium Series: Simulating Human Agents, 2000.

[5] C. L. Forgy. RETE: A fast algorithm for the many pattern/many object pattern

match problem. Artificial Intelligence, 19 (1), 1982.

[6] J. C. Giarratano and G. D. Riley. Expert Systems: Principles and Programming,

Second Edition, PWS Publishing, 1993.

[7] AI Depot. Artificial Intelligence Depot, 2002. URL: https://ai-depo

t .com/Main.html

[8] Intrinsic Algorithm. Game AI, 2003. URL: http://www.gameai.com/

[9] Analía Amandi, Marcelo Campo, and Alejandro Zunino. JavaLog: a framework-

based integration of Java and Prolog for agent-oriented programming. Computer

Languages, Systems & Structures, 2004.

[10] Alejandro Zunino. JavaLog Website, 2003. URL: https://www.exa.unice

n.edu.ar/~azunino/javalog.html

[11] FS Media. Warcraft 3 Preview. November 2000. URL: https:/

/www.firingsquad.gamers.com/games/war3preview/

[12] Dave C. Pottinger. Implementing Coordinated Unit Movement. Game

Developer Magazine, February 1999. URL: https://www.gamasutr

a.com/features/19990129/implementing_01.htm

[13] JCP. JSR 94: Java Rule Engine API, 2004. URL: https://ww

w.jcp.org/en/jsr/detail?id=94

[14] eXpertise2Go. Introduction to Expert Systems, 2001. URL: https://www.e

xpertise2go.com/webesie/tutorials/ESIntro/

[15] Alison Cawsey. Forward Chaining Systems. In Databases and Artificial

Intelligence 3 - Artificial Intelligence Segment, 1994. URL: https://www.cee.

hw.ac.uk/~alison/ai3notes/subsection2_4_4_1.html

[16] Steve Rabin. AI Wisdom - Game Artificial Intelligence Articles & Research,

2003. URL: https://www.aiwisdom.com/

[17] I. Wright and J. Marschall. More AI in Less Processor Time: “Egocentric” AI.

Gamasutra, 2000. URL: https://www.gamasutra.com/features/2000

0619/wright_01.htm

http://www.red3d.com/cwr/steer/gdc99/
http://www.red3d.com/cwr/steer/gdc99/
https://www.gamedev.net/articles/programming/artificial-intelligence/a-practical-guide-to-building-a-complete-game-a-r784/
https://www.gamedev.net/articles/programming/artificial-intelligence/a-practical-guide-to-building-a-complete-game-a-r784/
https://www.gamedev.net/articles/programming/artificial-intelligence/a-practical-guide-to-building-a-complete-game-a-r785/
https://www.gamedev.net/articles/programming/artificial-intelligence/a-practical-guide-to-building-a-complete-game-a-r785/
https://ai-depot.com/Main.html
https://ai-depot.com/Main.html
http://www.gameai.com/
https://www.exa.unicen.edu.ar/~azunino/javalog.html
https://www.exa.unicen.edu.ar/~azunino/javalog.html
https://www.firingsquad.gamers.com/games/war3preview/
https://www.firingsquad.gamers.com/games/war3preview/
https://www.gamasutra.com/features/19990129/implementing_01.htm
https://www.gamasutra.com/features/19990129/implementing_01.htm
https://www.expertise2go.com/webesie/tutorials/ESIntro/
https://www.expertise2go.com/webesie/tutorials/ESIntro/
https://www.cee.hw.ac.uk/~alison/ai3notes/subsection2_4_4_1.html
https://www.cee.hw.ac.uk/~alison/ai3notes/subsection2_4_4_1.html
https://www.aiwisdom.com/
https://www.gamasutra.com/features/2000%200619/wright_01.htm
https://www.gamasutra.com/features/2000%200619/wright_01.htm

[18] Marco Pinter. Realistic Turning between Waypoints. AI Game Programming

Wisdom. Charles River Media, 2002.

[19] J. E. Laird and M. van Lent. Developing an Artificial Intelligence Engine. In

Proceedings of the Game Developers' Conference, 2000.

[20] I. Frank. Explanations Count. AAAI 1999 Spring Symposium on Artificial

Intelligence and Computer Games, Technical Report SS-99-02, AAAI Press,

1999.

[21] D. Miranker. TREAT: A new and efficient match algorithm for AI production

systems. Pittman/Morgan Kaufman, 1989.

[22] A. Rollings. Game Architecture and Design, Coriolis Technology Press, 2000.

[23] Drew McDermott et al. PDDL–the planning domain definition language–

version 1.2. Yale Center for Computational Vision and Control, Tech. Rep. CVC

TR-98-003/DCS TR-1165, 1998. URL: https://homepages.inf.ed.ac.uk/

mfourman/tools/propplan/pddl.pdf

https://homepages.inf.ed.ac.uk/mfourman/tools/propplan/pddl.pdf
https://homepages.inf.ed.ac.uk/mfourman/tools/propplan/pddl.pdf

