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Abstract

Self-supervised representation learning has
proved to be a valuable component for out-
of-distribution (OoD) detection with only the
texts of in-distribution (ID) examples. These
approaches either train a language model from
scratch or fine-tune a pre-trained language
model using ID examples, and then take the
perplexity output by the language model as
OoD scores. In this paper, we analyze the
complementary characteristics of both OoD
detection methods and propose a multi-level
knowledge distillation approach that integrates
their strengths while mitigating their limita-
tions. Specifically, we use a fine-tuned model
as the teacher to teach a randomly initialized
student model on the ID examples. Besides
the prediction layer distillation, we present
a similarity-based intermediate layer distilla-
tion method to thoroughly explore the repre-
sentation space of the teacher model. In this
way, the learned student can better represent
the ID data manifold while gaining a stronger
ability to map OoD examples outside the ID
data manifold with the regularization inherited
from pre-training. Besides, the student model
sees only ID examples during parameter learn-
ing, further promoting more distinguishable
features for OoD detection. We conduct ex-
tensive experiments over multiple benchmark
datasets, i.e., CLINC150, SST, ROSTD, 20
NewsGroups, and AG News; showing that the
proposed method yields new state-of-the-art
performance1. We also explore its application
as an AIGC detector to distinguish between
answers generated by ChatGPT and human ex-
perts. It is observed that our model exceeds
human evaluators in the pair-expert task on the
Human ChatGPT Comparison Corpus.

1 Introduction

Machine learning systems such as dialog agents
are widely used in many real-world applications.

1Our code is available at https://github.com/
microsoft/KC/tree/main/papers/MLKD_OOD.
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Figure 1: Visualization of OoD-score distribution of
both ID and OoD examples2. Less overlap is preferred.

These systems have proved to work well when the
distributions of training data and test data are the
same or closely similar. However, when there is
a gap between training distribution and test distri-
bution, trained models may generate dubious, and
even disastrous, predictions that could cause seri-
ous AI safety issues (Hendrycks and Gimpel, 2017).
Therefore, it is crucial to detect out-of-distribution
(OoD) inputs for deployed machine learning sys-
tems. Moreover, lifelong learning systems are usu-
ally required to discover OoD examples during
their application to create new tasks and learn them
incrementally (Liu and Mazumder, 2021), which
further highlights the importance of OoD detection.
In this paper, we focus on the task of OoD detec-
tion with only in-distribution texts available during
learning for its capability of dealing with diverse
scenarios such as non-classification applications
while requiring the least data collection effort.

Recent studies have well demonstrated the va-
lidity of self-supervised representation learning
(Manolache et al., 2021; Arora et al., 2021; Mai
et al., 2022). These approaches use ID examples to
either fine-tune a large pre-trained language model
(Mfinetune) (Manolache et al., 2021; Mai et al.,
2022) or to train a language model from scratch
(Mai et al., 2022) (MfromScratch). Given an input
sequence for inference, token perplexity output by
the learned/fine-tuned language model is regarded

2We use test data of Group 2 (SST). Please refer to 4.1 for
more details.
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as the OoD score, i.e., indication of an example
being OoD. However, both methods have limita-
tions. For Mfinetune, since the pre-training corpus
usually consists of huge-scale datasets from a di-
verse range of genres, it is possible that some OoD
examples are seen during pre-training, leading to
a risk of non-distinguishing perplexities between
ID examples and these “leaked" OoD examples as
shown in Figure 1a. This issue is eliminated in
MfromScratch which only sees ID examples during
training. However, using only ID examples to min-
imize the self-supervised language modeling loss
without any other constraints may result in a less
compact representation space of ID data. Conse-
quently, OoD examples have more chance to locate
in the ID data manifold, leading to the overlap be-
tween perplexity distributions of ID examples and
OoD examples as shown in Figure 1b.

Inspired by Ma et al. (2022), which indicates that
unsupervisedly trained sentence embeddings (mean
pooling over all token representations) (Giorgi
et al., 2021) can achieve non-trivial performance
in the sentence classification task, here we contem-
plate that the pre-training procedure of language
models can facilitate their ability of capturing se-
mantic relatedness. In other words, language mod-
els are promoted to map examples with different
semantics to different manifolds via pre-training.
Therefore, we suggest inheriting the representation
space with such characteristics gained from pre-
training to mitigate the limitation of MfromScratch.

In this paper, we propose to adopt multi-level
knowledge distillation to integrate the strengths
from both methods while mitigating their limita-
tions. Specifically, we first produce a teacher model
by fine-tuning a large pre-trained language model
with ID training examples, so that features of the
teacher model can well represent the ID data man-
ifold, while to some extent preserving the ability
to map examples with different semantics to dif-
ferent manifolds. Then, we perform knowledge
distillation to learn a student model from scratch,
using ID training examples with supervision from
the fine-tuned teacher model. To learn the teacher’s
representation space more thoroughly, we not only
perform prediction layer distillation, but also pro-
pose a similarity-based intermediate layer distilla-
tion method to make the student model aware of
the information flow inside the teacher’s layers. Fi-
nally, we deploy the learned student model to com-
pute token perplexity for each inference example

as its OoD score and compare it with a threshold to
determine whether it is OoD or not. In contrast to
Mfinetune, our student model doesn’t see any OoD
examples during parameter learning, thus avoid-
ing the leakage of OoD examples. Compared with
MfromScratch, our student model is trained with the
regularization inherited from pre-training via the
multi-level supervision from the teacher model,
thus gaining a stronger ability to map OoD ex-
amples outside the ID data manifold. Both are
conducive to more distinguishable representations
for OoD detection.

Moreover, with the development of automatic
text generation technologies such as InstructGPT
(Ouyang et al., 2022) and ChatGPT3, the risk of
automatically generated content to society (e.g.,
generating fake news or fake reviews of products) is
increasing. Therefore, we further adapt our model
to distinguish texts generated by AI models and
human experts. By conducting experiments on the
Human ChatGPT Comparison Corpus (HC3), we
observe that our model beats human evaluators and
shows excellent capability in the pair-expert task.

Our major contributions can be summarized as:

• We analyze the limitations of existing methods
for OoD detection with solely ID examples.
We investigate their complementary character-
istics and propose a novel multi-level knowl-
edge distillation-based approach to unify the
strengths of previous studies while mitigating
their limitations. To our best knowledge, this
is the first attempt to adapt knowledge distilla-
tion to textual OoD detection.

• We propose a dynamic intermediate layer dis-
tillation method to force the student model to
thoroughly explore the representation space
of the teacher model. The learned student can
well represent the ID data manifold while gain-
ing a stronger ability to map OoD examples
outside the ID data manifold.

• Prior studies have conducted experiments on
different benchmarks and do not directly com-
pare to each other (Xu et al., 2021; Arora et al.,
2021; Manolache et al., 2021; Mai et al., 2022;
Gangal et al., 2020). We compare our ap-
proach to previous state-of-the-art methods
on multiple datasets across genres and do-
mains, i.e., CLINC150 (Larson et al., 2019),

3https://openai.com/blog/chatgpt/
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SST (Socher et al., 2013), ROSTD (Gangal
et al., 2020), 20 NewsGroups (Lang, 1995),
and AG News (Zhang et al., 2015); showing
that the proposed method yields new state-of-
the-art performance.

• We apply our model as an AIGC detector to
distinguish automatically generated texts from
those generated by human experts. The ex-
perimental results show that our model out-
performs human evaluators in the pair-expert
task on the HC3 benchmark.

2 Related Work

Considering the accessibility of OoD data and class
labels of ID data, previous work for OoD detection
can be divided into three categories: i) OoD data
available; ii) OoD data unavailable, but class labels
of ID examples available; and iii) both types of
data unavailable.

Methods with supervision from OoD data.
These methods usually train a binary classifier
(Larson et al., 2019) or a multi-class classifier
(Hendrycks et al., 2019; Zhan et al., 2021) to de-
tect OoD examples, where OoD data is regarded
as an independent class for training. OoD data
used as supervision is collected from other existing
datasets that are disjoint with the ID training data
(Hendrycks and Gimpel, 2017). Some previous
work also introduces synthesized pseudo outliers
to try to find a more representative classification
hyperplane for OoD data (Zhan et al., 2021). Since
there are various reasons for an example to be con-
sidered OoD, e.g., being out-of-domain (Daumé III,
2007), infrequent (Sagawa et al., 2020), or adversar-
ial (Carlini and Wagner, 2017; Arora et al., 2021),
it is impractical to collect OoD data for learning.

Methods without supervision from OoD data but
with supervision from ID class labels. These ap-
proaches generally consider the scenario of multi-
class classification such as intent detection (Lin
and Xu, 2019; Yilmaz and Toraman, 2020) and as-
sume that class labels of in-distribution (ID) data
are available during model training. Class proba-
bilities (Hendrycks and Gimpel, 2017; Shu et al.,
2017; Liang et al., 2018; Zeng et al., 2021b; Zhou
et al., 2021) and distance or density in latent space
(Lin and Xu, 2019; Xu et al., 2020; Podolskiy et al.,
2021; Zeng et al., 2021a; Zhou et al., 2021) are the
most prevalent metrics. In particular, Hendrycks
and Gimpel (2017) propose a strong baseline which

takes the maximum softmax probability (MSP) of
a multi-class classifier as a measure of OoD score.
Based on that, lots of following studies devote to
optimizing the model’s calibration with tempera-
ture scaling (Liang et al., 2018), contrastive learn-
ing (Zeng et al., 2021b; Zhou et al., 2021), etc. For
distance and density based approaches, they first
learn discriminative deep features via carefully de-
signed loss functions, e.g., large margin cosine loss
(Lin and Xu, 2019; Xu et al., 2020) and contrastive
loss (Zeng et al., 2021a,b; Zhou et al., 2021). Then,
compute distance or density metrics such as lo-
cal outlier factor (LOF) (Breunig et al., 2000; Lin
and Xu, 2019; Zeng et al., 2021b) and Gaussian
discriminant analysis (Xu et al., 2020; Podolskiy
et al., 2021; Zeng et al., 2021a,b) to detect OoD
examples.

Methods without supervision from both OoD
data nor ID class labels. Given the in-
distribution data, these methods generally estimate
ID density and regard test examples that deviate
from the estimated distribution as OoD examples.
Previous work for this setting mainly focuses in the
field of computer vision. Variational autoencoders
(VAE) (Kingma and Welling, 2014) and generative
adversarial networks (GAN) are frequently taken as
the backbone models for density estimation (Chen
et al., 2018; Zenati et al., 2018). In natural language
processing, current studies generally perform self-
supervised language modeling on ID examples and
take token perplexity as OoD score (Arora et al.,
2021; Manolache et al., 2021; Mai et al., 2022).
Gangal et al. (2020) further introduces an inde-
pendent background model to correct confounding
background statistics. Moreover, Xu et al. (2021)
learn a combination of latent representations from
different layers of pre-trained transformers to rep-
resent ID data manifold in a compact way. Based
on that, one-class classification methods such as
one-class SVM (Schölkopf et al., 2001) and SVDD
(Tax and Duin, 2004) can be used to detect OoD
examples. Jin et al. (2022) combine unsupervised
clustering and contrastive learning to learn the ID
data distribution and further use Gaussian mixture
model (GMM) (Reynolds, 2009) for density esti-
mation.

Our approach falls closer to the last category. We
propose an intermediate layer distillation method
and adopt multi-level knowledge distillation to
unify the strengths of different language modeling
likelihood-based methods, while mitigating their
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Figure 2: Framework of the proposed approach.

limitations. To our best knowledge, this is the first
attempt to adapt knowledge distillation to textual
OoD detection. Compared with Xu et al. (2021),
our approach does not involve any hyper-parameter
sensitive one-class classification stage. Compared
with Jin et al. (2022), our proposed method requires
no prior knowledge about the ID data, e.g., the num-
ber of semantic categories. Moreover, our approach
is orthogonal to Gangal et al. (2020) and we can
combine both to achieve better performance.

3 Methodology

In this section, we elaborate on the proposed multi-
level knowledge distillation approach for OoD de-
tection. First, we clarify how to produce a teacher
model that estimates the distribution of ID data.
Then, we describe the proposed multi-level knowl-
edge distillation procedure to teach a randomly
initialized student model via the produced teacher
model. Note that in this paper, both the teacher
and student networks are built with Transformer
layers (Vaswani et al., 2017). Figure 2 illustrates
the overall framework.

3.1 Teacher Model

Here, we use language models as the base model
to estimate the distribution of ID data. Causal lan-
guage modeling (CLM) and masked language mod-
eling (MLM) are the most representative language
models. CLM predicts the next token based on uni-
directional contexts, while MLM first masks some
tokens and then predicts the masked tokens condi-
tioned on bidirectional context. Since the nature of
MLM requires the model to forward multiple times
so that the probability of each token in the sentence
could be predicted, it is time-consuming to exploit

MLM to estimate ID data distribution. Therefore,
we utilize CLM in our approach.

Given a text sequence x = {xi}Ni=1, where xi
is the i-th token and N is the sequence length, the
probability estimation function of CLM can be for-
mulated as:

p(x) =

N∏
i=1

p(xi|x<i), (1)

where x<i denotes tokens before the i-th token xi.
In this paper, we fine-tune a large pre-trained

language model on the ID training examples to
produce the teacher model. The loss function w.r.t.
x is:

Lx(θtea) = − 1

N

N∑
i=1

log p(xi|x<i; θtea), (2)

where θtea represents the parameters of the teacher
model.

3.2 Knowledge Distillation

With the supervision from this teacher model, we
then train a student model by performing both pre-
diction layer distillation and intermediate layer dis-
tillation.

3.2.1 Prediction Layer Distillation

Given a training ID sequence x = {xi}Ni=1 ∈ Din,
the learning loss for prediction layer distillation
w.r.t. x is formulated as the Kullback-Leibler diver-
gence between the output probability distributions
over the vocabulary V output by the teacher model
and by the student model. Averaging over all to-
kens, we have:



Lx
pred(θstu) =

− 1

N

N∑
i=1

KL (p(xi|x<i; θtea), p(xi|x<i; θstu)) ,
(3)

where xi represents the i-th token in x,
p(xi|x<i; θtea) denotes the probability distribution
for the i-th token output by the teacher model,
and p(xi|x<i; θstu) represents that of the student
model.

3.2.2 Intermediate Layer Distillation
Considering that different layers in large pre-
trained language models generally correspond to
features at various abstraction levels (Jawahar et al.,
2019; Caucheteux et al., 2021), here we propose an
intermediate layer distillation method to facilitate
the student model acquiring a more comprehen-
sive awareness of the information flow inside the
teacher’s layers. Instead of pre-defining a fixed
mapping function between teacher layers and stu-
dent layers, we dynamically match each hidden
vector of the student to multiple hidden vectors of
different layers of the teacher.

Specifically, we first use ℓ2 distance to measure
the similarity between the hidden vector produced
by the student model w.r.t. the i-th token at the l-th
layer (i.e., hstul,i ) and that produced by the teacher
model w.r.t. the i-th token at the j-th layer (i.e.,
hteaj,i ) :

sl,i(j) = −
∥∥hstul,i −Wjh

tea
j,i

∥∥
2
, (4)

where j ∈ A, A represents the set of the teacher’s
layer indexes, and Wj are learnable parameters.

Let SK
l,i = {skl,i(·)}Kk=1 denote the top-K similar-

ities computed by Eq. (4) w.r.t. hstul,i . We then train
the student model by maximizing the similarities
in SK

l,i . Let βk denote the to-be-learned weighting
scalar corresponding to the k-th similarity in SK

l,i .
The learning loss at the l-th layer w.r.t. x can be
formulated as:

Lx
(l)(θstu) =

1

N

1

K

N∑
i=1

K∑
k=1

−βk · skl,i(·). (5)

Finally, we integrate the prediction layer distil-
lation and the intermediate layer distillation. Let
T denote the set of the student’s layer indexes, the
whole training loss of the student model is the sum-
mation of losses w.r.t. all sentences in Din:

L(θstu) =
∑

x∈Din

(
λLx

pred + (1− λ)
∑
l∈T

Lx
(l)

)
, (6)

where λ is a hyper-parameter for weighting.

3.2.3 Inference
For inference, we only use the learned student
model θstu to compute perplexity for each token xi
in an input sequence x = {xi}Ni=1. We calculate
the OoD score w.r.t. x by averaging over all tokens:

score(x) = − 1

N

N∑
i=1

log p(xi|x<i; θstu). (7)

We define a threshold γ to classify OoD exam-
ples against ID examples. Specifically, x is pre-
dicted as an OoD example if score(x) > γ, else it
is an ID example.

4 Experiments

4.1 Settings
Datasets Following Xu et al. (2021), Manolache
et al. (2021), and Gangal et al. (2020), we
conduct five groups of experiments for evalu-
ation: CLINC150 (Larson et al., 2019), SST
(Socher et al., 2013), ROSTD (Gangal et al.,
2020), 20NewsGroups (Lang, 1995), and AG-
News (Zhang et al., 2015). For dataset statistics
and other detailed information, please refer to Ap-
pendix A.1.

Evaluation Following Hendrycks and Gimpel
(2017) and Jin et al. (2022), we utilize the Area
Under Operating Characteristic curve (AUROC),
the Area Under Precision-Recall curve (AUPR),
and the False Alarm Rate (i.e., False Positive Rate)
at 95% Recall (FAR95) as metrics for a comprehen-
sive evaluation. Since our target is to detect OoD
examples without having to rely on the semantic
category of ID data, we treat OoD as the positive
class for computing AUROC, AUPR, and FAR95.

Implementation Details We implement our ap-
proach based on PyTorch 1.12.04 and Hugging-
Face’s Transformers5. For fair comparison, we
utilize GPT2-small (Radford et al., 2019) as the
base model as it has a similar number of param-
eters as BERT-base (Devlin et al., 2019) used in
Xu et al. (2021) and the discriminator of ELEC-
TRA (Clark et al., 2020) used in Manolache et al.
(2021). Following Xu et al. (2021), we train both
the teacher model and the student model for 5
epochs on CLINC150, SST, and ROSTD. Follow-
ing Manolache et al. (2021), we train our models
for 30 epochs on 20 NewsGroups and 5 epochs

4https://pytorch.org/
5https://github.com/huggingface/transformers
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https://github.com/huggingface/transformers


Method
CLINC150 SST ROSTD

AUROC (↑) AUPR (↑) FAR95 (↓) AUROC (↑) AUPR (↑) FAR95 (↓) AUROC (↑) AUPR (↑) FAR95 (↓)

TF-IDF+SVD† 58.5 21.8 - 78.0 73.2 - - - -
Likelihood Ratios‡ - - - - - - 96.35±0.41 93.44±0.37 20.10±5.25

MDF+IMLM† 77.8 39.1 - 93.6 89.4 - - - -
MDF+IMLM 77.46±0.33 39.23±0.52 65.87±1.13 96.79±0.06 95.62±0.06 11.68±0.41 97.71±0.10 93.00±0.32 9.03±0.43

DATE 83.38±0.15 50.21±0.18 66.67±1.65 82.20±0.18 83.11±0.41 55.26±1.97 96.59±0.43 91.77±1.06 17.06±1.82

Mfinetune 89.76±0.13 62.39±0.29 33.77±0.91 92.67±0.19 91.93±0.17 33.67±1.21 98.67±0.04 97.47±0.09 6.27±0.30

MfromScratch 91.73±0.12 68.78±0.62 28.31±0.40 96.60±0.65 96.42±0.63 17.98±3.47 99.10±0.03 98.25±0.06 3.88±0.22

Ours 92.51±0.18 70.94±0.78 27.16±0.65 97.97±0.40 97.81±0.42 9.50±2.09 99.14±0.03 98.33±0.06 3.79±0.11

Table 1: Performance comparison on CLINC150, SST, and ROSTD. † and ‡ represents results reported in Xu et al.
(2021) and Gangal et al. (2020), respectively.

Method
comp rec sci

AUROC (↑) AUPR (↑) FAR95 (↓) AUROC (↑) AUPR (↑) FAR95 (↓) AUROC (↑) AUPR (↑) FAR95 (↓)

IsoForest† 66.1 - - 59.4 - - 57.8 - -
OCSVM† 78.0 - - 70.0 - - 64.2 - -
CVDD† 74.0 - - 60.6 - - 58.2 - -
DATE† 92.1 - - 83.4 - - 69.7 - -
DATE 92.04±0.14 97.05±0.38 46.56±1.37 83.09±0.22 95.46±0.74 65.62±2.17 66.30±0.16 90.64±0.12 81.68±0.67
MDF + IMLM 86.37±0.12 94.08±0.08 53.33±0.36 75.77±0.25 90.63±0.13 69.63±0.25 67.02±0.12 87.81±0.10 86.18±0.68

Mfinetune 87.60±0.22 95.14±0.09 54.98±0.88 74.41±0.25 92.45±0.06 73.04±0.31 63.15±0.24 88.89±0.11 86.21±0.34

MfromScratch 91.29±0.60 97.29±0.11 49.36±5.08 85.36±0.56 96.27±0.12 64.28±3.66 67.80±0.23 90.40±0.16 85.12±0.23

Ours 92.41±0.22 97.49±0.12 43.30±1.55 87.68±0.15 96.79±0.08 54.66±1.41 69.83±0.29 91.14±0.15 84.95±0.54

Method
misc pol rel

AUROC (↑) AUPR (↑) FAR95 (↓) AUROC (↑) AUPR (↑) FAR95 (↓) AUROC (↑) AUPR (↑) FAR95 (↓)

IsoForest† 62.4 - - 65.3 - - 71.4 - -
OCSVM† 62.1 - - 76.1 - - 78.9 - -
CVDD† 75.7 - - 71.5 - - 78.1 - -
DATE† 86.0 - - 81.9 - - 86.1 - -
DATE 82.25±0.12 98.93±0.01 66.81±2.40 81.74±0.16 96.72±0.10 64.52±2.72 86.14±0.09 97.66±0.02 62.86±0.93

MDF + IMLM 62.26±7.70 96.80±0.81 92.81±5.10 81.05±0.16 95.48±0.06 62.38±0.31 80.85±0.26 96.14±0.08 65.14±0.35

Mfinetune 83.27±0.11 98.93±0.02 56.28±0.72 75.37±0.33 95.42±0.09 71.32±0.44 75.75±0.27 95.82±0.07 75.53±0.49

MfromScratch 85.01±0.25 99.16±0.01 63.56±2.00 87.53±0.17 97.87±0.01 51.32±0.62 86.48±0.18 97.90±0.06 58.57±1.23

Ours 89.02±0.24 99.35±0.03 44.66±0.73 88.47±0.15 98.11±0.04 50.85±1.07 87.51±0.11 98.01±0.03 55.74±0.92

Table 2: Performance comparison on 20NewsGroups. † represents results reported in Manolache et al. (2021).

on AG News, respectively. We use a batch size
of 8 and a maximum sequence length of 128. For
the optimizers, we use AdamW (Loshchilov and
Hutter, 2019) with the learning rate set to 5e − 5
for all models. λ in Eq. (6) is set to 0.5. Moti-
vated by Haidar et al. (2022), which indicate that
using only intermediate layers for distillation (from
RoBERTa_24 to RoBERTa_6) works the best, we
only distill the intermediate layers (T = {l}9l=3).
We compare each student layer to a combination of
K teacher layers, as Haidar et al. (2022) show that
concatenated representation distillation of sorted
randomly selected K intermediate layers is superior
to layer-wise distillation. We choose K = 2 for
the cardinality of the similar set SK

l,i considering

that there’s no information fusion among different
teacher layers if K = 1 and that a larger K may
introduce too much noise due to the weighted av-
erage of representations as in Equation (5). We
re-implement Xu et al. (2021) and Manolache
et al. (2021) with BERT-base using their open-
sourced code, and report the results on all bench-
mark datasets for a more comprehensive compari-
son. All experiments are conducted on one Tesla
V100 (16GB). The trainable parameters (i.e., θtea
and θstu) are 248M. The training time is about 30
minutes for each model.
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Figure 3: T-SNE Visualization of sentence representations from different models. Darker colors represents higher
OoD scores.

4.2 Main Results

Tables 1 and 2 report the results of our approach
alongside those reported by previous state-of-the-
art methods on CLINC150, SST, ROSTD, and
20NewsGroups. It can be seen that our proposed
method outperforms the prior methods with a large
margin in most experiments, achieving an improve-
ment of up to 9.13, 20.73, 38.71 points in terms
of AUROC, AUPR, and FAR95, respectively, on
CLINC150. This well demonstrates the effective-
ness of the proposed approach.

The results also show that MfromScrath generally
leads to superior performance than Mfinetune. We
conjecture that seeing no OoD examples during
parameter learning helps the randomly initialized
model avoid optimizing toward OoD distribution.
Without the bias and constraints inherited from
the pre-training process, the model trained from
scratch is more likely to find a local minimum that
better fits the ID training text and thus leads to
more distinguishable features for OoD detection.
Moreover, our approach, which uses the fine-tuned
model to teach a randomly initialized model, can
integrate their strengths via the proposed multi-
level knowledge distillation process, resulting in
superior performance.

4.3 Ablation Study

To validate the contributions of different compo-
nents in the proposed approach, here we introduce
two variants of our model for ablation study: i)
Ours w/ GPT2_Init_θstu, which initializes the stu-
dent model with the pre-trained GPT-2 model. ii)
Ours w/o Lx

(l), which eliminates the loss w.r.t. inter-
mediate layer distillation and only conducts output
layer distillation to learn the student model. Table
3 shows the results.

Comparing Ours with Ours w/ GPT2_Init_θstu,
we can see that replacing the randomly initialized

AUROC (↑) AUPR (↑) FAR95 (↓)

Ours 97.97±0.40 97.81±0.42 9.50±2.09
Ours w/ GPT2_Init_θstu 94.12±0.60 94.21±0.64 31.72±3.20

Ours w/o Lx
(l) 97.07±0.23 96.94±0.23 14.53±1.05

Table 3: Ablation study on SST.

student model with a pre-trained student model will
cause a significant performance drop, well verify-
ing our motivation to incorporate MfromScratch with
Mfinetune. Table 3 also illustrates that removing the
constraints on intermediate layers, i.e., L(x)

(l) , the
student model’s performance will decrease by 0.90,
0.87, and 5.03 in terms of AUROC, AUPR, and
FAR95, respectively. This well validates both the
effectiveness and necessity of intermediate layer
distillation. Moreover, though eliminating the in-
termediate distillation, the student model in Ours -
Lx
(l) which is derived with only the prediction layer

distillation still outperforms the baseline model
MfromScratch. We owe this superiority to the more
informative supervision, i.e., the probability distri-
bution produced by the teacher model, compared
with the ground-truth one-hot supervision used in
MfromScratch.

4.4 Analysis on Distribution of Sentence Repr.

To bring up insights on how multi-level knowledge
distillation promotes OoD detection, we utilize t-
SNE (Van der Maaten and Hinton, 2008) to reduce
the dimension of sentence representations obtained
from pre-trained GPT-2, Mfinetune, MfromScratch,
and the student model in our approach. Here, we
produce sentence representations by averaging to-
ken representations. The visualization is shown in
Figure 3. In Figure (3a), we can see that ID and
OoD examples locate uniformly in several separate
data manifolds because the model has no sense of
what is OoD and thus struggles to distinguish OoD



examples from ID examples. After applying fine-
tuning to the pre-trained model, representations
of the ID data converge to fewer manifolds and
it becomes easier to classify ID and OoD exam-
ples, specifically, OoD examples mainly lie in the
right-side of Figure (3b), which might lead to eas-
ier separation in high dimension space. However,
when comparing Figures (3b) and (3c), we can no-
tice that Mfinetune doesn’t fit the ID examples as
well as MfromScratch because the representation dis-
tribution of ID examples in Figure (3c) is more
condensed. This supports our conjecture that the
pre-training process may guide the model to a posi-
tion near an inferior local minimum where ID and
OoD examples are less separable. Last but not least,
Figure (3d) indicates that our student model pro-
duces a more compact distribution for ID examples
when trained from scratch. Meanwhile, Figure (3d)
also shows that ID representations and OoD repre-
sentations produced by our student model are more
dissociable. We conjecture that this is because the
model gains some ability to separate examples of
different semantics via knowledge distillation - the
teacher model equips this knowledge during pre-
training.

4.5 Application

ChatGPT, an optimized language model for dia-
log6, has attracted great attention in the NLP field
since its inception. It is capable of providing flu-
ent and comprehensive responses to a large variety
of questions. To study how close ChatGPT is to
human experts, Guo et al. (2023) proposed the Hu-
man ChatGPT Comparison Corpus (HC3), where
each question is paired with two answers, one is
a human answer collected from wiki sources and
public QA datasets, and the other is generated by
ChatGPT7. By conducting human evaluation, Guo
et al. (2023) indicates that it can be difficult to dis-
tinguish texts generated by ChatGPT from those
provided by human experts, and further propose
a RoBERTa (Liu et al., 2019) based detector to
distinguish both.

Following Guo et al. (2023), in this section, we
adapt our model as an AI-generated content (AIGC)
detector to explore its capability for preventing
the potential risks of AIGC abuse. As our model
uses perplexity as the OoD score and Guo et al.

6https://chat.openai.com/
7HC3 covers a wide range of domains (open-domain, com-

puter science, finance, medicine, law, and psychology) and is
widely used in lots of recent studies.

(2023) reveal that ChatGPT-generated answers are
usually of low perplexities, here we take ChatGPT-
generated answers as in-distribution data to train
our model. We divide the in-distribution data into
a training set and a test set. We use all the human-
generated answers as the OoD test set.

We first evaluate our model as in 4.1 and Ta-
ble 4 shows its performance results. We can see
that our approach significantly outperforms prior
state-of-the-art methods DATE and MDF+IMLM
under the same settings. Surprisingly, our unsu-
pervised method demonstrates comparable perfor-
mance with RoBERTa-single Detector, which is
a RoBERTa-based sentence classifier trained with
the supervision from all the ChatGPT-generated
and human-generated texts.

AUROC (↑) AUPR (↑) FAR95 (↓)

Unsupervised methods:
DATE 75.80 91.20 85.15
MDF+IMLM (BERT) 89.61 96.80 42.35
MDF+IMLM (GPT2-small) 91.53 92.56 31.84
Ours 99.80 99.95 0.61

Supervised method:
chatgpt-detector-roberta8 99.98 99.99 0.04

Table 4: Performance comparison on HHC3.

We also compare our model to the human evalu-
ation results listed in Guo et al. (2023). Given two
answers corresponding to the same question, with
one being generated by ChatGPT and the other by
a human expert, our model is required to determine
which answer is generated by ChatGPT. Table 5
shows that our model beats human evaluators and
perfectly handles this task.

Human Ours

All 0.90 1.00

reddit_eli5 0.97 -
open_qa 0.98 -
wiki_csai 0.97 -
medical 0.97 -
finance 0.79 -

Table 5: Accuracy comparison with human evaluation
on paired answers to determine the ChatGPT-generated
responses. Note that we run experiments using the
whole test set, while human evaluation in Guo et al.
(2023) is conducted on a subset of it.

8https://github.com/Hello-SimpleAI/
chatgpt-comparison-detection

https://chat.openai.com/
https://github.com/Hello-SimpleAI/chatgpt-comparison-detection
https://github.com/Hello-SimpleAI/chatgpt-comparison-detection


Method
business sci

AUROC (↑) AUPR (↑) FAR95 (↓) AUROC (↑) AUPR (↑) FAR95 (↓)

IsoForest† 73.2 - - 76.9 - -
OCSVM† 83.2 - - 80.7 - -
CVDD† 79.6 - - 79.0 - -
DATE† 90.1 - - 84.0 - -
DATE 89.46±0.15 95.19±0.12 50.26±1.49 83.88±0.37 93.29±0.24 60.97±3.12

MDF + IMLM 90.12±0.06 95.36±0.03 34.81±0.39 85.93±0.22 94.62±0.09 54.37±1.30

Mfinetune 89.19±0.10 95.27±0.05 67.63±0.24 76.52±0.14 88.36±0.13 63.95±0.42

MfromScratch 91.49±0.16 96.29±0.08 32.56±0.87 83.76±0.09 92.12±0.07 54.42±0.31

Ours 92.38±0.11 96.72±0.05 29.94±0.68 85.12±0.19 92.92±0.16 51.18±0.38

Method
sports world

AUROC (↑) AUPR (↑) FAR95 (↓) AUROC (↑) AUPR (↑) FAR95 (↓)

IsoForest† 84.7 - - 79.6 - -
OCSVM† 92.4 - - 79.9 - -
CVDD† 89.9 - - 84.0 - -
DATE† 95.9 - 90.0 - -
DATE 96.01±0.22 98.48±0.08 19.21±0.68 90.08±0.14 96.04±0.06 42.46±0.38

MDF + IMLM 97.91±0.06 99.20±0.03 7.37±0.23 91.28±0.08 96.68±0.04 38.63±0.47

Mfinetune 91.46±0.19 96.09±0.11 30.79±0.52 84.19±0.07 92.17±0.05 48.24±0.42

MfromScratch 97.00±0.08 98.86±0.04 10.75±0.39 89.46±0.05 95.27±0.04 38.51±0.59

Ours 97.31±0.06 98.97±0.03 9.27±0.36 89.89±0.04 95.43±0.04 37.86±0.35

Table 6: Performance comparison on AGNews. † represents results reported in Manolache et al. (2021).

5 Conclusion

In this paper, we focus on the setting of OoD de-
tection without supervision from both OoD data
nor ID class labels. We analyze the complemen-
tary characteristics of existing self-supervised rep-
resentation learning-based methods and propose
a multi-level knowledge distillation approach to
integrate their strengths, while mitigating their lim-
itations. We evaluate the proposed method on mul-
tiple datasets and results show that the proposed
method yields new state-of-the-art performance.
We analyze why our approach attains superior per-
formance by conducting ablation studies and sen-
tence representation visualization. We further ap-
ply our model as an AIGC detector to distinguish
ChatGPT-generated texts from those generated by
human experts and the experimental results demon-
strate that our model outperforms human evaluators
in the setting of paired answers.

Limitations

Table 6 shows the results of our model and
other methods on the AGNews benchmark. In-
terestingly, we notice that our approach reports a
slightly inferior performance when compared with
MDF+IMLM (Xu et al., 2021). We can see that

methods using sentence representations based on
token aggregation, e.g., fastText9 or Glove (Pen-
nington et al., 2014)-based IsoForest, OCSVM,
and CVDD (Ruff et al., 2019), as well as BERT
based MDF + IMLM (Xu et al., 2021), perform
especially well on AGNews compared to their per-
formance on other datasets. We conjecture that this
is because AGNews has a much larger variation of
sequence length (36.6) than other datasets (around
7 or 8). A larger length variation will lead to more
acute fluctuations in perplexities, especially when
adopting an autoregressive language model with
unidirectional context such as GPT-2-small in this
paper, making it more difficult to distinguish be-
tween ID and OOD examples than in other datasets.
In contrast, sentence representation based methods
benefit from directly estimating the OoD score us-
ing the information from the whole sentence, thus
producing superior performance. Fortunately, the
limitation of auto-regressive modeling could be
eliminated by leveraging Transcormer (Song et al.,
2022) as the base model of our approach, where
bidirectional context is used for estimating tokens
at each position. We leave this for future work.

9https://github.com/facebookresearch/fastText

https://github.com/facebookresearch/fastText
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A Appendix

A.1 Dataset Details

• Group 1: CLINC150. Larson et al. (2019)
introduce a crowdsourced dialog dataset. Fol-
lowing Xu et al. (2021), we use all training
queries covering 150 intents as ID training
data and fuse 4500 ID examples of the test
split with 1000 OoD examples for evaluation.

• Group 2: SST. Following Hendrycks et al.
(2020) and Xu et al. (2021), we use the train-
ing split of the SST dataset (Socher et al.,
2013) for ID training examples and use its test
split as ID test examples. The same described
random sample of 500 examples from 20
NewsGroups (Lang, 1995), English-German
Nulti30K (Elliott et al., 2016), RTE (Dagan
et al., 2005), and SNLI (Bowman et al., 2015),
is combined and used as OoD test examples.

• Group 3: ROSTD. Gangal et al. (2020) re-
leases a dataset consisting of 4590 OoD exam-
ples with respect to the English split of Schus-
ter et al. (2019) as the ID dataset. Here we use
the training ID, test-ID, and actual OoD as in
Gangal et al. (2020) for fair comparison.

• Group 4: 20NewsGroups. Following
Manolache et al. (2021), we only consider
articles from six top-level classes of 20News-
Groups (Lang, 1995) for evaluation. We con-
struct the ID data using examples from a sin-
gle label, i.e., training split for ID training and
test split for ID test. We take data correspond-
ing to other labels in the test split as OoD test
examples.

• Group 5: AGNews. AG News is a topic
classification dataset (Zhang et al., 2015) col-
lected from various news sources. There are
four topics in total. Similar to Group 4, we
conduct experiments with each single label
for ID and others for OoD, respectively.

• Group 6: HC3. Human ChatGPT Com-
parison Corpus (HC3) is a question-answer
dataset (Guo et al., 2023), which collects the
human (from wiki and public QA datasets)
and ChatGPT answers for the same questions.
HC3 covers a wide range of domains (open-
domain, computer science, finance, medicine,

law, and psychology). We conduct experi-
ments with ChatGPT answers for ID and hu-
man answers for OoD at the sentence level,
respectively.

Table 7 shows the statistics of the different
datasets and sub-topics, if any.

Group # of ID # of ID # of OoD
(train) (test) (test)

#1: CLINC150 15000 4500 1000

#2: SST 8544 2210 2000

#3: ROSTD 30521 8621 4590

comp 2857 1909 5390
misc 577 382 6917

#4: pol 1531 1025 6274
20NewsGroups rec 2301 1524 5775

rel 1419 939 6360
sci 2311 1520 5779

business 30000 1900 5700
#5: sci 30000 1900 5700

AGNews sports 30000 1900 5700
world 30000 1900 5700

#6: HC3 13442 13443 58546

Table 7: Dataset statistics.

A.2 MDF+IMLM with Different Base Models

We take MDF+IMLM from Xu et al. (2021) as
one of the baselines. In the main body of this
paper, we show the results of MDF+IMLM with
BERT as the base model because BERT is the most
considered counterpart for GPT-2-small used in our
approach. Here we include the RoBERTa-based
results of MDF+IMLM from Xu et al. (2021) for
your information.

Table 8 shows that using a more powerful base
model does bring significant performance gain to
MDF+IMLM. Though our model is implemented
with GPT-2-small, it still demonstrates compa-
rable (on SST) and even superior performance
(CLINC150) with RoBERTa based MDF+IMLM.

A.3 Discussion on CLM and MLM.

Here we discuss the consideration for using CLM
rather than MLM. In fact, we conducted experi-
ments using the previous method of masking X% of
tokens for one forward. However, the results were
not satisfactory. We attribute this to an insufficient
perplexity estimation in a single forward. In other
words, with MLM, it would be better to recover
the joint probability of the entire input sequence to



Method
CLINC150 SST

AUROC (↑) AUPR (↑) FAR95 (↓) AUROC (↑) AUPR (↑) FAR95 (↓)

MDF+IMLM (GPT-2-small)‡ 72.03 31.30 74.29 - - -
MDF+IMLM (BERT)† 77.8 39.1 - 93.6 89.4 -
MDF+IMLM (BERT)‡ 77.46 39.23 65.87 96.79 95.62 11.68
MDF+IMLM (RoBERTa)† 80.1 44.9 - 99.9 99.8 -

Ours (GPT-2-small) 92.51 70.94 27.16 97.97 97.81 9.50

Table 8: Performance comparison on CLINC150 and SST. † represents results reported in Xu et al. (2021). ‡ denotes
our re-implemented results.

achieve better performance, i.e., forwarding an in-
put sentence multiple times so that the probability
of each token in the sentence could be predicted.
This should be time-consuming and thus we use
CLM in this paper.


