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ABSTRACT
Advances and standards in Internet of Things (IoT) have
simplified the realization of building automation. However,
non-expert IoT users still lack tools that can help them
to ensure the underlying control system correctness: user-
programmable logics match the user intention. In fact, non-
expert IoT users lack the necessary know-how of domain
experts. This paper presents our experience in running a
building automation service based on the Salus framework.
Complementing efforts that simply verify the IoT control
system correctness, Salus takes novel steps to tackle prac-
tical challenges in automated debugging of identified policy
violations, for non-expert IoT users. First, Salus leverages
formal methods to localize faulty user-programmable log-
ics. Second, to debug these identified faults, Salus selec-
tively transforms the control system logics into a set of pa-
rameterized equations, which can then be solved by popular
model checking tools or SMT (Satisfiability Modulo Theo-
ries) solvers. Through office deployments, user studies, and
public datasets, we demonstrate the usefulness of Salus in
systematically debugging the correctness of IoT control sys-
tems for building automation.

CCS Concepts
•Human-centered computing→Ambient intelligence;
•Software and its engineering → Software testing
and debugging;
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Behind the realization of building automation is a user-
programmable control software system, which governs com-
plex interactions among IoT-enabled sensors and devices.
Interestingly, leveraging decades of experience from the wire-
less sensor networks (WSN) community, most industry solu-
tions adopt the event-driven programming paradigm, where
users author sets of rules to associate triggering sensor events
and triggered device actions. These automation rules are
also known as IFTTT-style rules (If This Then That). Mil-
lions of IoT users are exposed to IFTTT-style rules [27, 46],
through popular vendor-specific products [9, 28] and inte-
gration services [2, 6]

Although automation rules such as IFTTT-style rules can
intuitively and easily express the user-intended building au-
tomation, ensuring the underlying control system correct-
ness (w.r.t. user expectations) is actually a difficult task.
This observation is crucial as IoT-enabled actuation can be
liable to our physical ill-being [17, 37]. One challenge is that,
the space of reachable system states quickly grows with the
number of IoT-enabled sensors and devices deployed, and
the amount of time the system runs for. Most importantly,
many IoT users are non-experts – people who lack the neces-
sary know-how and tools to ensure the control system would
behave as intended.

While academic communities have studied the problem
of formally verifying system against policies [7, 18, 26, 30],
these efforts typically rely on domain experts to manually
debug faulty logics or error traces. Recently, the cyber-
physical system (CPS) community started to verify building
automation behavior. DepSys [35] checks for conflicting ac-
tuation triggered by multiple rules concurrently, but it does
not verify system behavior against user expectations (i.e.,
policies). To this end, SIFT [31] demonstrated the feasi-
bility of automatically verifying IoT control system correct-
ness w.r.t. user policies. However, SIFT lacks mechanisms
for users to subsequently understand the lengthy error trace
and debug identified policy violations. Our studies suggest
that many users give up on debugging after 45 seconds.

This paper presents our experience in running a building
automation service based on the Salus framework. Com-
plementing efforts that simply verify the IoT control sys-
tem correctness, Salus tackles practical challenges in en-
abling automated debugging of identified policy violations for
non-expert IoT users. While design principles are language-
agnostic, Salus currently assumes the logic is sets of event-
driven IFTTT-style rules, and user expectations to verify
are specified as policies in conjunction of conditions.

Salus implements the following design principles to au-
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IF room . temp < 18 THEN room . f i r e p l a c e = on ;
IF room . temp > 24 THEN room . f i r e p l a c e = o f f ;
IF room .CO > 180 THEN room . f i r e p l a c e = o f f ;
IF room . temp > 28 THEN house . hvac = o f f ;
IF house . hvac == on THEN room . f i r e p l a c e = o f f ;

Listing 1: An automation task/app that controls the living
room temperature.

tomate debugging policy violations.
First, to effectively localize faulty user-programmable log-

ics, Salus leverages formal methods. Specifically, for each
policy violation, the counterexample from model checking
indicates both system initializations (e.g., initial building
states) and state transitions (e.g., automation rules). These
information can be the starting point for the subsequent
fix formulation. While bounded code exploration [31] could
potentially be used in place of model checking, it has false
negatives as it uncovers only policy violations happening
within some k time steps. Furthermore, estimating k has
been proven difficult.

Second, to efficiently formulate potential fixes for faulty
user-programmable logics, Salus selectively transforms con-
trol system automation rules into a set of parametrized equa-
tions. Doing so can leverage state-of-the-art SMT (Satisfia-
bility Modulo Theories) solvers to find satisfiable solutions,
which are then filtered based on preferences to formulate
personalized fix suggestions. Finally, these fix suggestions
are presented to the user.

In summary, this paper makes the following contribu-
tions. We identify manual debugging as the pain point for
non-expert users to ensure the control system correctness
of building automation. And, we take the first step to en-
able automated debugging for policy violations, with two
novel components in the Salus framework. Salus cleverly re-
formulates the problem statement into sub-problems, where
advances in formal methods or SMT solvers can be lever-
aged. Results show Salus’s fix recommendations have a user
acceptance rate of 91%. And, it can debug 82% more policy
violations while saving about 87.47% of debugging time, as
compared to manual inspection.

2. BACKGROUND AND MOTIVATIONS
Before we present our approach to debug IoT control sys-

tems for building automation, this section introduces two
common inputs of debugging: user-programmable logics (or
automation rules), and policies. Then, it discusses the cur-
rent debugging practice.

2.1 Event-driven Programming Paradigm
Building on decades of experience in the WSN community,

most building automation services adopt event-triggered rules
for user-programmable logics. Popularized by IFTTT.com [2],
these automation rules are also known as IFTTT-style rules.
An IFTTT-style rule (referred to as if-this-then-that) has
the following semantic: IF some event occurs THEN per-

form some action. The triggered event comes from IoT
devices attached to the IoT control system. In Salus, the
automation task for a building appliance can consist of sev-
eral IFTTT-style rules, and Listing 1 shows a real-world
example. Salus executes rules in the authored order to re-
solve conflicting device commands issued by multiple rules

bedroom . occupancy == TRUE
AND bedroom . env br i gh tne s s <= 31.5
AND bedroom . l i g h t . switch = ON

Listing 2: An example of user policies for the energy effi-
ciency.

(e.g., turning room.fireplace on and off at the same time).

2.2 Policies for Intended System Behavior
Policies (or specifications) are the common practice to ex-

press the intended control system behavior, which should
not be violated. And, formal verification is one approach to
decide whether the control system would violate any policy.
Policies are written as the conjunction of conditions, and
Listing 2 illustrates with a case of room brightness control.
At the underlying system level, we note that Salus imple-
ments linear temporal logic (LTL) [16] to express the tempo-
ral constraints. The default LTL operator in Salus is Global
(i.e., always), as it is most commonly used in automation
scenarios. The decoupling between human-readable policies
and complexities in formal verification allows Salus users to
focus only at the level of building automation.

2.3 Debugging Control Systems
To debug a policy violation, the common industry practice

is to present domain experts with a counterexample. As
an error trace, the counterexample provides two pieces of
information describing how the violation was reached: (1)
control system initial state values, and (2) a path of control
system state transitions.

Unfortunately, relying on non-expert IoT users to under-
stand the counterexample is not feasible. First, the coun-
terexample shows how a policy violation happens, but not
why. For example, suppose Listing 1 violates the user in-
tention that only one of HVAC and fireplace should be on
at a time, it is not obvious which rules contribute to the
policy violation. Second, understanding a counterexample
can take as much effort as preparing a program for model
checking. Our user study suggests that, given the counterex-
ample, non-expert users typically give up debugging in less
than one minute. While there are efforts to help users to
understand the counterexample [7], they do not help users
in fixing.

3. OUR APPROACH
As Figure 1 shows, Salus complements existing efforts that

simply verify the IoT control system correctness. In case of
verification failure, Salus automatically debugs and formu-
lates solutions for the user. User inputs are automation
tasks encoded in IFTTT-style rules (c.f. §2.1), user poli-
cies encoded in conjugation of conditions (c.f. §2.2), and
descriptions of devices and environment (c.f. §4.1 and §4.2).

With the violated user policy identified by the existing
policy verification efforts, the Fault Localization engine (Fault-
Loc) tries to localize the faulty user-programmable logics.
This information is subsequently used to formulate fixes. It
includes how the violating state can be reached from some
initial system state values, through some sequence of state
transitions. This step relies on symbolic model checkers to
perform unbounded verification, which achieves verification



Figure 1: Salus framework complements existing policy veri-
fication efforts for IoT control systems, to enable automated
debugging of faulty user-programmable logics. Salus builds
on advances in formal methods and solvers to achieve this
goal.

Figure 2: Example FSM model of a light with a brightness
sensor.

completeness at the expense of slightly increased compu-
tation overhead. Model checking needs FSM (finite state
machine) models for the IoT control system to be verified,
and §4 describes the three aspects that Salus tries to auto-
matically model: devices, environment, and time.

Based on the output of FaultLoc, the Actionable Feedback
engine (ActFeedback) tries to formulate two types of fix sug-
gestions for the localized user-programmable logics. First,
it attempts to determine whether any automation rule pa-
rameters could be changed. Second, it attempts to see if ad-
ditional automation rules could be introduced. Then, based
on the user preference, ActFeedback formulates a solution
which are then presented to the user for approval.

4. FAULT LOCALIZATION
The FaultLoc engine relies on unbounded model checkers

to localize faulty user-programmable logics. In the case of
building automation, running model checking requires three
aspects to be modeled: IoT devices, environment, and time.
While the common practice in related areas is for domain
experts to manually build scenario-specific models, we at-
tempt to automate this process for non-expert IoT users.
This section discusses what schema information is needed,
and how these schema information can be collected.

4.1 Device Modeling
Figure 2 shows the FSM model generated for a light de-

vice, with transitions between ON and OFF states. In general
terms, a FSM contains a finite set of states, the initial State,
variables, a finite set of synchronous events, and a set of state
transitions.

To generate the FSM model, we argue that each device
should be associated with a profile of standardized schema
that encodes the necessary device specification. The follow-
ing pieces of data schema are necessary: (1) A set of device

Working Modes, which will be translated into states in the
FSM. One of them marked as Starting Mode. (2) A set
of device Variables, which will be translated into a set of
FSM variables. These represent values read from the envi-
ronment, or internal data kept on the device. (3) A set of
device Triggers, which describes the conditions of working
model transitions. Such rules will be translated into Tran-
sitions in the FSM. (4) A list of device Commands, which
describes what kind of action can be executed by it. Such
command interfaces will be translated into synchronous la-
bels in the FSM, which can help to connect FSM models
of different devices. (5) A set of Effects for commands that
actuate on the environment. Effects describe which domains
are affected upon executing an automation command.

Preparing the device schema information above requires
an understanding of device specifications, and thus this task
should ideally be carried out by manufacturers or experts.
Fortunately, there is a lot of momentum in maintaining de-
vice schema. First, many cloud-based IoT device registries
are available from industry [5, 38] and community [47]. These
registries typically follow the JSON data format, which are
sufficiently flexible to encode schema for a wide range of de-
vices. Second, many device discovery standards [1, 22] allow
IoT devices to advertise their own schema.

4.2 Environment Modeling
Salus creates one FSM model for each environment vari-

able such as temperature. States in the FSM model repre-
sent discrete values the variable can take on.

Since device actuation has impacts on the environment
variable, transitions in the environmental model are trig-
gered by state transitions in the device model. An example
is turning on a heater would increase the temperature in
the same space. Symbolic model checkers can support such
behavior with parallel state transitions (e.g., asynchronous
system in NuSMV checker) to change both the device model
and the environment model. As the mapping from device
actuation to environment variable is necessary, Salus repre-
sents this information by associating each device action to
its affected domains. This approach is similar to the DoST
ontology [14].

To model the building characteristics, Salus allows the
user to specify what IoT devices and sensors are in the same
logical space. A physical space (e.g., a large and open of-
fice space) is divided into one or several logical spaces. And,
devices can influence the readings of sensors in the same log-
ical space. This modeling methodology minimizes the user
overhead in modeling the indoor environment while main-
taining the fidelity, as most devices cannot influence sensors
that are very far away.

4.3 Time Modeling
Salus can support temporal behavior modeling (e.g., a

heater gradually heats up a space) with one simple exten-
sion: defining state transitions per time unit. For example,
for each time unit that a heater is on, the room environment
model transitions to a state corresponding to the amount of
heat accumulated so far.

While the efficient realization of temporal behavior mod-
eling is out of scope for this paper, our future work investi-
gates how hybrid automaton [25] can reduce the modeling
overhead.



Figure 3: The ActFeedback engine suggests rule fixes which
adjust parameters and triggering conditions.

5. FIX FORMULATION
With the faulty user-programmable logics localized by the

FaultLoc engine, the ActFeedback engine automatically for-
mulates potential fixes for the control system. Two types
of fixes are attempted by the ActFeedback engine: changing
automation rules’ parameters or thresholds (c.f. §5.1), and
adding or deleting rules’ triggering conditions (c.f. §5.2).

Technically, as Figure 3 illustrates, the ActFeedback en-
gine formulates fixes through two phases. First, the param-
eterizing phase cleverly frames the IoT control system as a
set of parametrized equations, whose right-side equality is
constraints of the violated policy. Then, to solve these pa-
rameterized equations, the solving phase re-purposes model
checkers’ ability to solve for unknown parameters. And, it
subsequently translates these parameter values into fix rec-
ommendations, and presents to the users for approval.

Intuitively, the parameterizing phase highlights the search
space where satisfiable solutions could be found. As some
building automation deployments can have a lot of com-
ponents (e.g., device/environment models, policies, and au-
tomation rules), exploring the entire search space can incur
a significant overhead. To reduce the search space, the Act-
Feedback engine parametrizes only the following automation
rules: (1) automation rules that share devices or domains
with the violated policy, and (2) automation rules that the
FaultLoc found to be part of the state transitions leading to
the policy violation.

We note that, mathematically speaking, a system of pa-
rameterized equations can have many satisfiable solutions.
In such cases, the ActFeedback engine presents users one fix
recommendation at a time, and users can iterate through
recommendations. It is also possible to learn user prefer-
ences and prioritize recommendations accordingly, and this
section discusses such approaches.

The rest of the section discusses approaches and solver
strategies that the ActFeedback engine uses to formulate
both types of fix suggestions.

5.1 Rule Parameter Adjustment
The first form of rule fix suggestions is by adjusting rule

parameters. Considering the following automation rule:

IF kitchen.CO2 > 1000 THEN kitchen.fan = on

If the enforced safety policy is (kitchen.CO2 ≤ 1000), or
”kitchen CO2 level cannot exceed 1000 ppm, globally”, the
fan could be turned on later than expected. While this
particular problem can be addressed by modifying the CO2

threshold, the challenge is to automate this process.

Figure 4: Possible logical relations between spaces repre-
sented by the control system behavior, M , and policies, ρ.
The control system behavior satisfies policies in case (a), but
not (b) and (c).

Figure 5: Ideally, the ActFeedback engine should find M ′′, a
solution space that overlaps with the space of policies. This
is possible in case (a) – changing automation rules enlarges
the original control system behavior space, M , to M ′, and
selecting solutions reduces M ′ to M ′′. However, this is not
possible in case (b).

The basic idea is to re-use model checkers’ ability of solv-
ing parametrized equations – this is typically for finding
counterexamples of policy violations. Imagine an equation
– where the left side represents a chain of system transitions
(partially dictated by app rules), and the right side repre-
sents conditions of a policy – instead of fixating rule parame-
ters as traditionally done, we fixate system initial values and
make rule parameters free. Then, model checkers can solve
for these free variables that do not satisfy the negation of a
violated policy. The negation is necessary as model checkers
find counterexamples, not satisfied examples. For the sake
of discussion, we assume unbounded model checkers that do
not put a bound on verification coverage.

Next, we expand the basic idea above with formal nota-
tions. Given an IoT system model M and a specification ρ,
we say M � ρ if all behaviors of M fall into ρ. As shown in
Figure 4.A, if the rounded rectangle is the complete set, the
ellipse is the set of behaviors that satisfies ρ, and the cloud
shape is the behavior set of M , the cloud shape should be
a subset of ρ. However, if M 2 ρ, the state space could be
like Figures 4.B or 4.C.

Intuitively, fixing a violation of an IoT system means chang-
ing the state space of M from either Figure 4.B or 4.C to
that from Figure 4.A. The first step is to parametrize the
original rule set, by substituting all parameter values with
free variables. Continuing the kitchen example above, the
parametrized rule below has a free variable X taking a value
between [0, 2500]:

IF kitchen.CO2 > X THEN kitchen.fan = on

Since the value of x is changed from a concrete value 1,000 to
a range of [0, 2500], many new behaviors are introduced into
the system. Therefore the behavior space of M is a subset
of M ′. The behavior space of M ′ may or may not overlap
with that of ρ. Using Figure 4.C as an example, Figure 5.A
and 5.B illustrate the relations among M ′, M , and others.

If M ′ does not overlap with ρ (c.f. Figure 5.B), it means
the system can never satisfy the specification. However, if



M ′ overlaps with ρ (c.f. Figure 5.A), then some configura-
tions of rule parameters can satisfy the specification. And,
the challenge is in finding these configurations, as repre-
sented by M ′′. Clearly, if M ′′ exists, M ′′ � ρ, in other words
M ′′ 2 ¬ρ. Therefore, the way we try to get the configura-
tion of M ′′ is asking the model checker to check whether
M ′ � ¬ρ. If the result is false, the model checker will re-
turn a concrete counterexample trace τ , in which all the
parametrized variables will be assigned to a concrete value.
As τ falls in ρ, the configuration in τ makes a potential
candidate for M ′′.

To realize this procedure, the ActFeedback engine con-
cretizes the parametrized model M ′ by the configuration in
τ , and it gets a new model Mτ . If Mτ � ρ, then we have
found a fix for the original system, as the new configuration
now satisfies the specification. If Mτ 2 ρ, we can start the
procedure again looking for a new potential fix. In order to
avoid configurations in τ which have been already tried, we
simply add new clauses into the parametrized system to en-
sure parameters can not be set to them again. For instance,
suppose we have k parametrized variables v1 v2 . . . vk, we
just add an invariant into the model M ′ that ¬((v1 ==
v1τ )&&(v2 == v2τ ) . . .&&(vk == vkτ )). As the system is a
finite state machine (i.e., the number of potential configura-
tions is limited), this procedure is guaranteed to terminate.

Finally, in the case of Mτ � ρ, Mτ needs to be verified
again by the Verification engine. This is because the config-
uration in τ may only work with the specific initial state in
τ , not all the other initial states.

5.2 Triggering Condition Adjustment
Another form of fix suggestions is by adjusting triggering

conditions (i.e., add or delete). Considering the following
automation rule:

IF livingroom.temp <= 18 THEN livingroom.heater = on

If the policy is (livingroom.occupancy == false AND liv-

ingroom.heater == off), or ”if no one is in the living room,
then heater should always be off”, the violation can only be
fixed by introducing additional conditions to the automation
rule.

Similar to rule parameter adjustment, we adjust triggering
conditions by parameterizing the existence of each IF sub-
clause. We introduce a boolean variable λi for each sub-
clause ci in the conditions policies provide hints on. For
example, parameterizing the living room rule above would
give:

IF λ1 ⇒ (livingroom.temp <= X) AND

λ2 ⇒ (livingroom.occupancy == Y)

THEN livingroom.heater = on

The basic idea is as follows. If Mp 2 ¬ρ, we will get a
counterexample trace τ , with concrete values for each λi. If
λi is TRUE, the sub-clause ci has to be true to make the IF
expression stands, which means the sub-condition ci should
be kept in the rule. Otherwise, ci will not affect the behavior
of τ , as it has been “short-circuited” by λi. In this case, ci
can be removed.

Similar to how we implement adjusting rule parameters,
we concretize the parametrized model by the configuration
in τ . If λi == TRUE, we keep the sub condition ci, oth-
erwise, we remove it. Then, we check whether the resulting
model Mτ is a valid fix. We note that, as the number of λi

is finite, the procedure is guaranteed to terminate. Lastly,
to identify possible IF sub-clause to add, the ActFeedback
engine takes hints from violated policies, by considering all
conditions in the policies but not in the rules.

5.3 Extensions and Additional Considerations
Prioritizing Solutions. We acknowledge that the solution
space of a set of parameterized equations can be large. And,
it is challenging to decide the best fitting recommendation
for a user. Considering the kitchen fan example in §5.1, while
any CO2 threshold between 0 and 999 would theoretically
not violate the policy, a more conservative user would prefer
a relatively lower threshold than others. Salus tackles this
problem by getting hints from users in two ways. First, Salus
prioritizes the recommendation whose parameters are closest
to the original. In the kitchen fan example, Salus would first
recommend the CO2 threshold at 999. Second, while asking
for a new fix recommendation, users can explicitly specify
their preferred range of values for individual IoT devices.

Alternative Parameter Solving Technique with SMT.
This section so far builds on general model checking tech-
niques to find potential fixes. While this procedure can han-
dle a wide spectrum of specifications, e.g., linear temporal
logic (LTL) and computation tree logic (CTL), the com-
putational overhead can grow fast with the complexity of
equations to solve (c.f. §7.3).

For trivial policies without LTL and CTL syntax, SMT
(Satisfiability Modulo Theories) solvers can be the alter-
native approach for faster parameter solving. Technically,
we systematically encode all transitions within a bounded k
number of transitions, into a set of parametrized SMT for-
mulas Fk. Then, we ask the SMT solver (e.g., Z3 [19]) to
test whether Fk can be satisfiable w.r.t. constraints of pol-
icy. If yes, then a solution naturally becomes a possible rule
fix.

The challenge of such bounded checking is in choosing the
bound, k. In our procedure, when general model checking
gets a counterexample trace τ , the length of τ , lτ , could be
a good candidate for k. In other words, it makes sense to
use SMT to fix the state space of the model reachable in lτ
steps.

6. IMPLEMENTATION
The Salus prototype has ≈ 13k lines spanning over system

components, algorithms, and a front-end graphical UI (GUI)
tool. Components are implemented as a set of C# and
Python modules that communicate via RESTful interfaces
and a TCP-based control plane. The Salus prototype cur-
rently supports interfacing with networked Philips Hue [42],
Belkin WeMo [9], and AllJoyn [1] devices.

The GUI tool acts as the control hub. In addition to vi-
sualizing discovered devices, the tool offers configurations
for (1) the environment where automation takes place (i.e.,
house and office), (2) user policies, and (3) deployed IoT
apps. After physical devices are installed and user IoT apps
are submitted, the GUI tool automatically contacts appro-
priate system components to verify. For any identified policy
violations, it subsequently calls system components to start
debugging. Finally, the GUI tool presents fix recommenda-
tions to users for approval.

We build the FaultLoc engine on top of state-of-the-art
formal verification tools: NuSMV [15] as the model checker



Figure 6: Floor plan of a “standard house”, used in user
studies to elicit app rule sets.

and Z3 [19] as the SMT solver. Both tools are available
online.

The ActFeedback Engine currently has two implemen-
tations based on either model checkers (NuSMV) or SMT
solvers (Z3). The former is the default because it can han-
dle violations of policies written in LTL. But, Salus can be
configured to use the latter for better performance in some
cases (c.f. §7.3). Through the front-end graphical UI, users
can either accept and apply a fix recommendation, or ask
for another one. Moreover, users can specify that specific
parameters or app rules should not be modified, and the
engine then tries to find solutions that accommodate this
request.

7. EVALUATION
Our key evaluation findings are as follows: (i) Formally

ensuring the IoT control system correctness is an arduous
task for humans. Even with a technical background, less
than 25% of IoT users properly fix faulty user-programmable
logics resulting in policy violations. (ii) Salus is able to lo-
calize faulty user-programmable logics for all intentionally
induced policy violations and real-world case studies. (iii)
Salus scales better than previous IoT-related verification ef-
forts. Its formal model checking technique takes 98.29% less
time on average, as compared to symbolic execution testing.
(iv) Our fix suggestions have a user acceptance rate of 91%.

7.1 User Studies
To understand the pain points in ensuring IoT control

system correctness, we conducted two 30-people user stud-
ies. Studies assumed the IoT-enabled apartment shown in
Figure 6. The distributions of our 30 participants were as
follows: 94% are male and 6% were female, 87% were 20 ∼
35 years old and 13% were over 35 years old. These par-
ticipants were either studying or working in the computer
science field.

User Study #1 asked participants to write IFTTT-style
automation rules for representative automation scenarios:
brightness control, temperature control, environment per-
sonalization, occupants well-being, house security, energy
efficiency, etc. An example is ”write rules to control lights
based on occupancy”. In addition, participants were asked
to describe events that should not happen, to provide us
with a sense of user policies.

In User Study #2, given 29 IFTTT-style automation rules
and six policies for the above apartment, participants tried
to find and fix all six policy violations. Policy #1 is ”bed-
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Figure 7: User study results suggest that manually finding
and fixing policy violations are difficult for IoT users.

Policy #
(Unit is second) 1 2 3 4 5 6
Model checking 0.33 0.13 0.26 0.06 0.06 0.07
Sym. exec. testing 8.93 17.99 12.07 4.62 4.14 4.85

Table 1: Time needed to find each policy violation in User
Study #2, with model checking (used by Salus) and sym-
bolic execution based testing.

room temperature should be between 21 and 27 Celsius”, #2
is ”bedroom should not be bright or over-bright when some-
one is sleeping”, #3 is ”all lights should be off when no one
is home”, #4 is ”entrance door should be locked when door
RFID reading is not recognized”, #5 is ”balcony door should
be locked if no one is home”, and #6 is ”kitchen gas level
should never be danger”. During the study, we also recorded
the time taken by participants to answer each question.

We present motivating insights from user studies. Figure 7
shows manually localizing and debugging policy violations
can be arduous. First, out of the six policy violations, Policy
#1 matches our expectation of being the easiest to fix, with
the highest percentage of participants (39%) being able to
find and fix the violation correctly. For most questions, less
than 25% of participants successfully completed. Second,
while trying to fix policy violations, many participants did
not realize that a fix might involve changing several rules,
updating several triggering conditions, or considering several
devices. For example, to properly fix Policy #3, participants
need to ensure that automation rules exist for each light.
And, to properly fix Policy #2, participants need to consider
both inside and outside lighting sources. Third, we observed
that many participants gave up debugging a policy violation
after 45 seconds.

7.2 Fault Localization
The Fault Localization engine (FaultLoc) uses formal model

checking to localize faulty user-programmable logics w.r.t.
a policy violation. Compared to the symbolic execution
based testing used by previous IoT-related efforts [31], for-
mal model checking generally provides a stronger guarantee
on false negatives and exhibit much less computation over-
head. This section quantifies these two observations.

For comparison, we collected baseline results with Pex,
a state-of-the-art symbolic execution tool [44] widely used
in the academic community. To prepare inputs for Pex,
we rewrote automation rules in the form of IF statements,
and wrapped them around with a WHILE loop (to simulate
continuously triggering app rules per time unit). In addition,
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Figure 8: The runtime complexity of verifying one policy
differs for techniques based on model checking and symbolic
execution based testing.
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Figure 9: Salus can find and fix policy violations with
87.47% less time than human.

we rewrote policies as assertions at the end of the WHILE
loop. Since Pex is bounded, we instructed Pex to stop if no
policy violation is detected after 200 state transitions.

Table 1 shows the time needed to find individual policy
violations in User Study #2 (based on a house with 41 de-
vices). On average, Salus used 98.29% less time to find a
policy violation than symbolic execution. In fact, for sym-
bolic execution, the amount of time needed also depends on
the number of system state transitions before a policy vio-
lation is triggered. For example, our empirical data suggest
that Policy violation #2 was found at the 132nd iteration,
which is much larger than 17 iterations for Policy #5.

However, as the control system complexity scales up, sym-
bolic execution might have faster verification time. For-
tunately, building automation at homes and offices might
not reach this scale. To measure the impact of the num-
ber of devices, we took Policy #1 from User Study #2, and
incrementally added devices that periodically sample (e.g.,
clocks). Figure 8 illustrates that model checking has an ex-
ponential runtime complexity due to the state space growth.
Since symbolic execution based testing is bounded, the lin-
ear growth is simply due to the overhead of simulating ad-
ditional devices (at the expense of false negatives). Finally,
for the scenario tested in Figure 8, while model checking
is outperformed at 86 devices, most IoT deployments have
much less devices in a logical space (e.g., living room).

7.3 Fix Formulation
This section evaluates the ActFeedback engine with two

major metrics: (1) the user acceptance rate of fix recommen-
dations, and (2) the computation overhead of generating fix
recommendations.
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Figure 10: The impact of variable range on runtime com-
plexity of generating a fix suggestion that updates four app
rules. We compare techniques based on model checking and
SMT solvers.

7.3.1 User Acceptance
User study #2 results suggest that our fix suggestions had

a user acceptance rate of 91%. And, ∼9% of fix recommen-
dations were rejected due to personal preferences, and users
subsequently requested for another fix recommendation.

Figure 9 shows that Salus could find and fix policy viola-
tions with 87.47% less time, as compared to human. Inter-
estingly, this figure also suggests that many users gave up
after 45 seconds if they could not identify policy violations,
and after 56 seconds if they cannot fix the identified pol-
icy violations. Therefore, the lack of automated debugging
introduces a significant gap for which unsafe IoT control
systems can creep in.

An interesting observation is the amount of time needed
to generate fix suggestions varies from one policy to another.
Policy #1 needed the most time. As we drill down in the
microbenchmarks next, there are several factors behind this,
which include the range of variables. Policy #1 depends on
the room temperature, which has a wider range of states
than binary variables such as door open/close.

7.3.2 Computation Overhead
We now discuss the ActFeedback engine’s computation

overhead. As mentioned in §5, fix recommendations are es-
sentially solutions to a set of parametrized equations (for-
mulated from sequences of automation rules) that satisfy a
given constraint (formulated from policies). In addition to
the complexity of equations (e.g., number of free variables,
and variables’ value range), the underlying solver technique
also impacts the computation overhead. Our current sys-
tem implementation can use either a general model checker
(based on NuSMV) or an Satisfiability Modulo Theories
(SMT) solver (based on Z3). As this section demonstrates,
while the former supports a wider spectrum of policies, the
latter scales more gracefully with the complexity of equa-
tions.

Figure 10 illustrates the runtime overhead to generate a
policy violation fix that involves changing four app rules. To
collect evaluation data, we use Policy #1 from User Study
#2, and this policy concerns temperature whose variable
range can be easily extended. Empirical results suggest
that general model checkers cannot efficiently solve equa-
tions with variables of large range, and the runtime com-
plexity grows faster than bounded model checker. On the
other hand, being designed to solve equations efficiently,
SMT solvers have a more graceful runtime complexity. In



fact, we also observe the same pattern while varying the
number of free variables needed to solve.

By default, Salus currently uses model checking for gener-
ating violation fix recommendations. This way, it can sup-
port a wider spectrum of policies, which includes violations
that happen after an unknown number of system transitions.
However, users can switch to SMT solvers, if necessary.

8. DISCUSSION
This section discusses overarching issues related to the

design of the Salus framework.

Model Limitations. As with all model checking efforts,
behaviors that are not encoded in the models cannot be
checked. To reduce human errors in manually construct-
ing models, Salus automates model constructions as much
as possible. However, our current implementation does not
efficiently model some aspects of an IoT system. One such
aspect is temporal properties, e.g., a heater takes time to
pre-heat. While our current realization assumes each state
transition takes up one time unit, the state space can grow
quickly to slow down verification. Furthermore, the envi-
ronment model does not fully consider all physics and dy-
namics. We plan to incorporate new techniques (e.g., hybrid
automata [11]) to address these limitations.

Scalability in Practice. Both model checking and SMT
solving have an increasing complexity w.r.t. the system size.
For instance, the satisfiability problem is known to be NP-
complete, which suggests no known way to efficiently locate
a solution. Since Salus leverages the state of the art from the
formal verification community, it inherits these limitations
but also benefits from any advances. Furthermore, since
buildings are physically divided into spaces and rooms, the
number of devices to be considered at a time has a rela-
tively lower complexity as compared to other control sys-
tems. Therefore, the runtime overhead from model checking
and SMT solving does not incur significant user-perceivable
delays in our case.

Support for Other Programming Paradigms. Our
current implementation supports IFTTT-style app rules, due
to their popularity and flexibility [36, 39, 45]. Since model
checking is a language-agnostic concept, tools are also avail-
able for various other programming paradigms. However,
depending on the language complexity, generating fix sug-
gestions might require additional work. We plan to explore
this direction in the future.

Learning User Preferences. While being out of scope for
this paper, data mining could be one venue for Salus to learn
user preferences and subsequently apply to formulating fix
suggestions. We share our experience below to spark further
exploration.

User preferences can be derived from frequently observed
user behavioral patterns, and each pattern can be encoded
as the conjugation of event conditions. Such patterns can
be constructed with the decision tree classifier. The output
is a tree whose branches consist of intermediate nodes de-
scribing conditions on observed sensor data, and leaf nodes
predicting a device’s state. Decision trees have several char-
acteristics that fit the case of IoT. First, decision trees do
not assume prior knowledge of the learning graph topology
(e.g., the precise set of sensors that would influence an actua-
tion), especially as non-experts do not typically have domain

Dataset Number of devices Avg daily data ptrs
CASAS-7 M×51, D×14, H×2, 14,127

W×2, T×5, P×1
CASAS-8 M×51, D×14, H×2, 12,071

W×2, T×5, P×1
CASAS-13 L×17, M×44, T×5 6,126
HH120 M×11, MA×4, L×7, 3,605

LS×15, T×4, D×3
HH122 M×19, MA×5, 64,687

T×5, LS×24, D×4
BJW-1 L×1, M×1, T×1, 85,107

LI×1
BJW-2 L×1, M×1, T×1, 86,223

LI×1
M : Motion. D : Door. H : Heater. W : Water flow.
T : Temperature. LS : Light sensors. P : Power.
L: Light. LI : Light intensity.
MA: Wide-area infrared motion sensors.

Table 2: The deployment set up for our office datasets and
CASAS datasets.
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Figure 11: The deployment complexity impacts the time
needed to learn the user preferences in device usage.

knowledge of devices and physical phenomena. Second, each
decision tree branch is already a conjugate of conditions.

Constructing decision trees is an iterative process that
builds layer by layer in a top-down fashion. It starts by
choosing the most significant tuple of (sensor, threshold)
and splits the dataset based on the threshold. Standard
practice defines this significance by the information gain, or
how well a (sensor, threshold) tuple predicts an actuating
device state. Building subsequent layers of the decision tree
follows the same process to split the remaining data. The
process stops either when the decision tree already reaches
four levels, or when the classification correct rate is 100%.
From crawling ≈ 50, 000 shared recipes on IFTTT.com and
app rules authored in our user study, we observe that typical
human-readable rules do not exceed four conditions.

We next show preliminary results to illustrate the poten-
tial of learning user preferences in assisting Salus. We used
seven deployment datasets (c.f. Table 2): two are from our
office deployments (BJW-1 and BJW-2), and five are from
CASAS [4] (CASAS-7, CASAS-8, CASAS-13, HH120, and
HH122). Both office datasets have two months of data, with
a sampling interval of five seconds. All CASAS datasets
are around one week long, with a sampling interval varying
between 10 and 300 seconds.

From 98 patterns mined, we manually inspected top 30
patterns of high confidence. 91.11% of these presented pat-
terns were marked as being reasonable. The reason behind
many cases of recommendation rejection is the incomplete-



ness of datasets. For example, if the living room heater had
only ON state in the dataset, we would record the pattern
(livingroom.heater == on).

Both the deployment size can impact the training time.
To quantify this aspect, we varied the number of devices in
CASAS datasets. Figure 11 illustrates a linear relationship
between the number of devices in the training set and the
training time.

9. RELATED WORK
IoT Security and Testing. Most efforts from the security
community target the IoT connectivity: protocol design, en-
cryption or authentication [1, 3], privacy [34], etc. We argue
that better programming support is another key to close the
IoT safety gap, especially in ensuring the programmed be-
havior matches the intended behavior. In the context of IoT,
SIFT [31] took the first step to demonstrate the feasibility
of using symbolic execution techniques to automatically find
safety problems. Building on this momentum, Salus tack-
les practical challenges in enabling automated debugging of
identified policy violations for non-expert IoT users.

IoT Control System Verification. Many IoT platforms
aim for a flexible programming interface and high usability,
but relying on IoT users to debug problems without suffi-
cient assistance can be difficult [10]. While HomeOS [21]
allows priorities to be assigned to IoT apps, priorities are
not sufficient if two apps do not form a clear hierarchy or
distinction of priority. In addition, many efforts on running
concurrent applications in sensor networks [33, 49] are either
limited in resolving conflicts (e.g., imposing overly strong
restrictions) or too complex to be comprehensible to non-
experts. Finally, DepSys [35] places the burden of properly
specifying app intents and dependencies on developers, and
it does not address system-wide policy violations.

While SIFT [31] demonstrated the potential of formally
verifying IoT apps, Salus addresses challenges in making
formal verification practical in real world. These challenges
include automated assistance for policy authoring and vio-
lation debugging. Furthermore, SIFT relies on symbolic ex-
ecution based exploration that is bounded, but Salus adopts
model checking to traverse the full state space. As a result,
Salus can answer more complex questions, e.g., temporal
behavior.

Fault Localization and Correction Assistance. Coun-
terexamples (or traces) can be too long or too convoluted
(e.g., if there are many processes involved) to make debug-
ging failures a trivial task. Many efforts tried to add expla-
nations to counterexamples. [8] processes traces and high-
lights causes of a violation, as the way to explain the failure
to users. Significant attention has also been given to the ex-
traction of additional information about the model from the
trace to ease debugging [7, 13, 20, 23, 24, 30]. These range
from calculating distance metrics between a counterexam-
ple and correct traces [24] to translating a counterexample
into a formula where a maximal number of clauses can be
discarded as not the source of faults [30]. While users need
to manually map the findings of these approaches back to
the original code, there are also efforts on improving the
feedback by pointing out relevant code fragments [40].

Salus goes beyond counterexamples, and it tries to rec-
ommend IoT app rule fixes. While automatic repairing of
problems has recently been an active area in the software

testing community [12, 32, 41, 48], our approach cannot
rely on non-expert users to write test cases or extract se-
mantics from static analysis of programs. Some efforts focus
on Boolean programs [29, 43], but IoT app interactions re-
quire more complicated theories such as integer arithmetic.
Moreover, Salus needs to consider fix suggestions that do
not significantly change intended automation.

10. CONCLUSION
IoT control systems for building automation can run au-

tomation tasks authored by non-expert users. These users
require assistance to ensure their user-programmable logics
will match the intended behavior. Complementing efforts
that simply verify the IoT control system correctness, Salus
demonstrates the feasibility and benefits of automating de-
bugging. The paper also discusses the potential of leveraging
data mining as a future extension to the Salus framework.
In addition, we plan to explore other formal method tech-
niques, to improve the performance in handling temporal
states and large-scale systems.

11. ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for con-

structive reviews and Prof. Anand Sivasubramaniam for
shepherding.

Lei Bu is supported by the National Key Basic Research
Program of China (2014CB340703) and the National Nat-
ural Science Foundation of China (61561146394, 91318301,
61572249).

12. REFERENCES
[1] AllJoyn. http://www.alljoyn.org.

[2] IFTTT: Put the internet to work for you.
http://ifttt.com.

[3] Thread. http://threadgroup.org.

[4] WSU CASAS Datasets.
http://ailab.wsu.edu/casas/datasets.

[5] Amazon. Device Registry for AWS IoT.
http://docs.aws.amazon.com/iot/latest/developerguide/thing-
registry.html.

[6] Apple. HomeKit.
http://developer.apple.com/homekit.

[7] T. Ball, M. Naik, and S. K. Rajamani. From Symptom
to Cause: Localizing Errors in Counterexample
Traces. In POPL, 2003.

[8] I. Beer, S. Ben-David, H. Chockler, A. Orni, and
R. Trefler. Explaining counterexamples using
causality. Formal Methods in System Design, 2012.

[9] Belkin. Wemo.
http://www.belkin.com/us/Products/c/home-
automation.

[10] A. Brush, B. Lee, R. Mahajan, S. Agarwal, S. Saroiu,
and C. Dixon. Home automation in the wild:
challenges and opportunities. In CHI, 2011.

[11] L. Bu, Q. Wang, X. Chen, L. Wang, T. Zhang,
J. Zhao, and X. Li. Toward Online Hybrid Systems
Model Checking of Cyber-Physical SystemsŠ
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