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A Table Question Alignment based Cell-Selection Method

for Table-Text QA
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Hybrid Question-Answering (HQA), which targets reasoning over tables and passages

linked from table cells, has witnessed significant research in recent years. A common

challenge in HQA and other passage-table QA datasets is that it is generally unreal-

istic to iterate over all table rows, columns, and linked passages to retrieve evidence.

Such a challenge made it difficult for previous studies to show their reasoning ability

in retrieving answers. To bridge this gap, we propose a novel Table-alignment-based

Cell-selection and Reasoning model (TACR) for hybrid text and table QA, eval-

uated on the HybridQA and WikiTableQuestions datasets. In evidence retrieval,

we design a table-question-alignment enhanced cell-selection method to retrieve fine-

grained evidence. In answer reasoning, we incorporate a QA module that treats the

row containing selected cells as context. Experimental results over the HybridQA

and WikiTableQuestions (WTQ) datasets show that TACR achieves state-of-the-art

results on cell selection and outperforms fine-grained evidence retrieval baselines on

HybridQA, while achieving competitive performance on WTQ. We also conducted a

detailed analysis to demonstrate that being able to align questions to tables in the

cell-selection stage can result in important gains from experiments of over 90% table

row and column selection accuracy, meanwhile also improving output explainability.

Key Words: Table Cell Selection, Table QA, Question Answering

1 Introduction

Text-based question-answering datasets derive answers based on reasoning over given passages

(Rajpurkar et al. 2016; Chen et al. 2017; Joshi et al. 2017; Yang et al. 2018), while table-based

QA datasets collect tables from sources such as WikiTables (Pasupat and Liang 2015a; Zhong

et al. 2017; Chen et al. 2019).1 However, datasets combining textual passages and tables, like

HybridQA (Chen et al. 2020), OTT-QA (Chen et al. 2020), and TAT-QA (Zhu et al. 2021) are

more realistic benchmarks. As the answer to a given question may come from either table cells
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or linked passages, current hybrid QA models usually consist of two components, a retriever to

learn evidence and a reasoner to leverage the evidence to derive answers. Such models retrieve

evidence from different granularities, coarse-grained (e.g., row or column) or fine-grained (e.g.,

cell), and directly use a span-based reading comprehension model to reason the answer.

Kumar et al. (2021), for example, chooses coarse-grained regions as evidence, e.g., a table row.

Chen et al. (2020) and Eisenschlos et al. (2021), however, focus on fine-grained units, table cells,

and linked passages. To preserve the advantages and eliminate the disadvantages of different-

granularity evidence, Sun et al. (2021a) propose MuGER2, which performs multi-granularity

evidence retrieval and answer reasoning.

Wang et al. (2022) conducts extensive experiments to prove that a coarse-grained retriever

contributes less than a fine-grained retriever. Moreover, fine-grained methods, although giving

an exact position of candidate cells, fail to illustrate why the selected cells are chosen, while

our method is based on row and column selection probabilities. We thus further extend the

fine-grained method by aligning questions with tables, letting our approach know which parts

of questions are accounted for by which modalities. Intuitively, multi-hop questions in the text-

table QA task usually contain two pieces of information from different modalities, tables and

passages. Moreover, tables and passages are connected with evidence contained in tabular data.

Our method implicitly decomposes the questions for different modalities to locate evidence and

improve cell-selection accuracy.

As illustrated in Figure 1, an example from the HybridQA dataset shows how humans work
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performance. AdamW is used as an optimizer algorithm with a learning rate of 5× 10-5 and a batch size

of 32. We set the per-GPU train batch size to 16 while training the span-based QA model. Final answers

are evaluated using EM and F1 scores. We also automatically iterated through increments of 0.1 in the

range [0, 1] to select the best σ to balance the multi-task training.
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Fig. 2 TACR model architecture. From left to right, we first construct a hybrid alignment dataset to jointly train the
table-question-alignment and table-cell-selection modules. We then concatenate filtered linked passages with selected
top-k candidate cells as paragraphs and feed them into a text-based multi-hop QA module to retrieve answers.

other text-table QA datasets, which makes the alignment task difficult. We use an unsupervised text-table

QA-generation method to generate questions as well as alignment labels.

Alignment Generation. We follow the settings of the MQA-QG method (Pan et al. 2020), using a

pre-trained Google T5 (Raffel et al. 2019), fine-tuned on the SQuAD dataset (Rajpurkar et al. 2018), to

generate multi-hop questions from tables and passages based on a bridge entity, a table cell that contains

the bridge entity, and a linked passage that describes the bridge entity. The bridge entity is critical in rea-

soning because it connects the tables and passages, which are difficult to locate in the original HybridQA

dataset.

Such bridge entity provides us with additional information to align table headers with generated ques-

tions based on the column containing golden cells and the column containing the bridge entity. We align

the columns that contain bridge entities and answers to questions following two schema-linking alignment

rules:

Name-based Linking. This rule refers to exact or partial occurrences of the column/table names in

the question, such as the occurrences of“player” in the question in Figure 1. Textual matches are the

most explicit evidence of table-question alignment and, as such, one might expect them to be directly

beneficial to the table-question alignment module.

Value-based Linking. Table-question alignment also occurs when the question mentions any values

that occur in the table and consequently participate in the table-cell selection, such as“the second most”
in Figure 1. While it is common for examples to make the alignment explicit by mentioning the column

6

output : 2024/1/11(5:7)

Journal of Natural Language Processing Vol. No. 2022

Fig. 1 Example from the HybridQA dataset. The top sentence is the original question, and words in different colors
show different parts of questions required for reasoning in different modalities. The two headers in blue-dashed boxes
are column names aligned with the given question. TACR first uses a method based on table-question-alignment to
align the original question with table columns to help obtain golden table cells and then retrieve the final answer based
on linked passages.

derive answers. Such models retrieve evidence from different granularities, coarse-grained (e.g., row or

column) or fine-grained (e.g., cell), and directly use a span-based reading comprehension model to reason

the answer.

(Kumar et al. 2021), for example, chooses coarse-grained regions as evidence, e.g., a table row. (Chen

et al. 2020) and (Eisenschlos et al. 2021), however, focus on fine-grained units, table cells, and linked

passages. To preserve the advantages and eliminate the disadvantages of different-granularity evidence,

(Sun et al. 2021a) propose MuGER,2 which performs multi-granularity evidence retrieval and answer

reasoning.

(Wang et al. 2022) conducts extensive experiments to prove that a coarse-grained retriever contributes

less than a fine-grained retriever. Moreover, fine-grained methods, although giving an exact position of

candidate cells, fail to illustrate why the selected cells are chosen, while our method is based on row

and column selection probabilities. We thus further extend the fine-grained method by aligning questions

with tables, letting our approach know which parts of questions are accounted for by which modalities.

Intuitively, multi-hop questions in the text-table QA task usually contain two pieces of information from

different modalities, tables and passages. Moreover, tables and passages are connected with evidence

contained in tabular data. Our method implicitly decomposes the questions for different modalities to

locate evidence and improve cell-selection accuracy.

As illustrated in Figure 1, an example from the HybridQA dataset shows how humans work on multi-

hop and multi-modal QA tasks. The original question "What is the middle name of the player with the

second most National Football League career rushing yards ?" can be divided into two parts, "What is the

2

Figure 1 Example from the HybridQA dataset. The top sentence is the original question, and words in

different colors show different parts of questions required for reasoning in different modalities.

The two headers in blue-dashed boxes are column names aligned with the given question.

TACR first uses a method based on table-question-alignment to align the original question

with table columns to help obtain golden table cells and then retrieve the final answer based

on linked passages.
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on multi-hop and multi-modal QA tasks. The original question “What is the middle name of

the player with the second most National Football League career rushing yards ?” can be divided

into two parts, “What is the middle name of” and “the player with the second most National

Football League career rushing yards?” for passages and tables, respectively. Such sub-questions

are connected with the evidence of a cell (“Walter Payton”). For humans, we first locate who

was the player in the second rank, which requires information from two columns: “Rank” and

“Player”. After locating the cell, we can finally determine Walter Payton’s middle name from

the passage. Such reasoning process inspired us to develop TACR, a Table-alignment-based

Cell-selection and Reasoning model, which incorporates a fine-grained evidence-retrieval module

that utilizes table-question-alignment to learn which parts of the question are used for retrieving

evidence from different modalities and reasoning towards answers.

To explicitly and correctly show the reasoning process in the text-table QA task, in the

evidence retrieval stage, TACR first selects the golden cells and avoids redundant information

in multi-granularity evidence that would lower the performance of the answer-reasoning module.

The table-cell-selection module of TACR is designed to navigate the fine-grained evidence for the

reader by fusing well-learned information from the table-question-alignment module. Compared

with current fine-grained retrievers, the table-question-alignment module of TACR can help our

model learn which parts of questions are used for reasoning in which modality, and which parts

of tables contain candidate cells. Together with the alignment module, TACR preserves both

high golden cell-selection accuracy and shows competitive QA performance on the HybridQA

and WikiTableQuestions (WTQ) datasets, while providing improved explainability.

Our contributions are as follows: (1) TACR is the first model able to apply the table header

alignment method in the passage-table QA task; (2) We jointly train the cell-selection and table-

question alignment modules to improve golden cell selection performance and preserve the QA

reader’s performance; and (3) We conduct extensive experiments on the HybridQA and WTQ

datasets to demonstrate the effectiveness of TACR.

The remainder of this paper is organized as follows. In Section 2, we overview the related work.

In Section 3, we introduce details of the proposed framework. We show detailed experimental

results in Section 4. Finally, we conclude the paper in Section 5.
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2 Related Work

2.1 Table Question Answering

Table QA has gained much attention, as shown by benchmark datasets such as WikiTable-

Questions (Pasupat and Liang 2015b), WikiSQL (Zhong et al. 2017), SPIDER (Yu et al. 2018),

and TABFACT (Chen et al. 2019). However, these datasets mainly focus on reasoning on tables

and ignore important knowledge stored in the textual corpus. Consequently, QA covering both

tabular and textual knowledge has gained increasing interest. Chen et al. (2020) pioneered a

passage-table QA benchmark, HybridQA, with Wikipedia tables linked to relevant free-form text

passages (e.g., Wikipedia entity-definition pages). The OTT-QA (Chen et al. 2020) benchmark

extended HybridQA to the open domain setting, where a system needs to retrieve a relevant set

of tables and passages first before trying to answer questions. Moreover, the links from the table

and passage are not provided explicitly.

2.2 Table-Question Alignment

There are several table-question-alignment methods. Schema-linking-based methods, such as

RAT-SQL (Wang et al. 2019), introduce a relation-aware transformer encoder to improve the

joint encoding of a question and schema. Liu et al. (2022) propose a similarity learning-based

question-schema-alignment method to obtain a semantic schema-linking graph and observed how

the pre-trained language model (PLM) embeddings for the schema items are affected. Zhao and

Yang (2022) use the same words that appear in both the natural language statement and the

table as weak supervised key points and design an interaction network to explore the correlation

between the representations of the natural language statements and tables.

2.3 Hybrid QA

Studies on hybrid QA usually retrieve different granularities of evidence from heterogeneous

data to retrieve the final answer. Hybrider, proposed by Chen et al. (2020), is a two-phase pipeline

framework to retrieve gold table cells as evidence and input their values and linked passages

into a QA model to extract the final answer. Sun et al. (2021b) proposes Dochopper, an end-

to-end multi-hop retrieval model that directly concatenates rows with related textual evidence

as its inputs. Pan et al. (2020) explores an unsupervised multi-hop QA model, called MQA-

QG, which can generate human-like multi-hop questions by building a reasoning graph from

heterogeneous data resources. Kumar et al. (2021) propose MITQA, which applies multiple-

instance training objectives to retrieve coarse-grained evidence. On the contrary, Eisenschlos
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et al. (2021) introduces a transformer-based model with row- and column-wise attention for fine-

grained evidence retrieval, e.g., table cells. Wang et al. (2022) propose a unified retriever that

tries to preserve the advantages and eliminates the disadvantages of different-granularity evidence

retrieval methods.

TACR differs from the above models mainly in two aspects: (1) TACR focuses on providing

an explicit reasoning process by aligning multi-hop questions to tables, so it learns which parts

of multi-hop questions are accounted for by retrieving evidence from which modality; and (2)

The table-question alignment can enhance the reasoning ability of the table cell selection module

with the help of our generated hybrid alignment dataset. TACR shows competitive performance

to that of other table QA models on the HybridQA and WTQ datasets on the basis of high

row, column, and cell selection accuracy. To the best of our knowledge, no text-table QA system

handles the challenge of explicitly showing its reasoning process and multi-hop question table

alignment.

2.4 Table Cell Retrieval

Jauhar et al. (2016) construct a multiple-choice table QA benchmark that includes over 9,000

question-table pairs via crowd-sourcing and proposed a table-cell search model based on calculat-

ing all relevance scores between each cell and question. Such a model is reasonable and intuitive

but time-consuming. TACR selects gold cells based on row and column selection. Suppose that a

table contains n rows and m columns; the table cell search method must calculate n∗m scores for

each cell, while TACR needs to calculate only n+m scores for each row and column, and selects

the gold cell in the row and column with the highest score. Sun et al. (2016) focus on extracting

entities from questions and building a row graph and then mapping the question to the pair of

cells in the same row of a table. However, some entities may not appear in both questions and

table cells, e.g., an entity of the question in Figure 1 that should be extracted is National Football

League, but it cannot be mapped into any cells.

3 Methodology

As described in the previous section, both coarse- and fine-grained approaches fail to pro-

vide a reasoning process showing which parts of multi-hop questions map to which modality

and evidence. Here we describe the details of TACR and its three main components: (1) data

augmentation for training the table-question alignment module; (2) a multi-task learning module

for table-question alignment and table-cell-selection; and (3) a text-based multi-hop QA module
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performance. AdamW is used as an optimizer algorithm with a learning rate of 5× 10-5 and a batch size

of 32. We set the per-GPU train batch size to 16 while training the span-based QA model. Final answers

are evaluated using EM and F1 scores. We also automatically iterated through increments of 0.1 in the

range [0, 1] to select the best σ to balance the multi-task training.
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name (e.g.,“Rank”), many real-world questions do not (like in the example). Consequently, linking a

value mentioned in the question to the corresponding column also requires background knowledge.

Fig. 3 The table-question-alignment module of TACR. We treat the alignment objective as a similarity learning
task.

3.3 Passage Filtering
In this stage, we aim to filter out linked passages unrelated to a question, namely keeping almost

noise-free passages for the following modules. Moreover, the total number of tokens in passages linked

to table cells can be large, exceeding the maximum input sequence length of current LMs. Thus, we

utilize Sentence-BERT (Reimers and Gurevych 2019) to obtain question and passage embeddings and

rank the top-k sentences based on their text similarities. We expand the cells with the filtered top k-related

sentences to both fit in the max input length of language models and to preserve the useful information

from passages. More details on this stage are provided in Appendix 4.9.

3.4 Table Alignment & Cell Selection
In this stage, we jointly train a multi-task model based on the ALBERT architecture with the objectives

of selecting the expanded cell that contains the answer and table-question alignment to different modalities

to enhance the previous objective. TACR accepts the full table as inputs and outputs the probabilities of

selected cells based on the probabilities of row and column selection.
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Fig. 2 TACR model architecture. From left to right, we first construct a hybrid alignment dataset to jointly train the
table-question-alignment and table-cell-selection modules. We then concatenate filtered linked passages with selected
top-k candidate cells as paragraphs and feed them into a text-based multi-hop QA module to retrieve answers.

other text-table QA datasets, which makes the alignment task difficult. We use an unsupervised text-table

QA-generation method to generate questions as well as alignment labels.

Alignment Generation. We follow the settings of the MQA-QG method (Pan et al. 2020), using a

pre-trained Google T5 (Raffel et al. 2019), fine-tuned on the SQuAD dataset (Rajpurkar et al. 2018), to

generate multi-hop questions from tables and passages based on a bridge entity, a table cell that contains

the bridge entity, and a linked passage that describes the bridge entity. The bridge entity is critical in rea-

soning because it connects the tables and passages, which are difficult to locate in the original HybridQA

dataset.

Such bridge entity provides us with additional information to align table headers with generated ques-

tions based on the column containing golden cells and the column containing the bridge entity. We align

the columns that contain bridge entities and answers to questions following two schema-linking alignment

rules:

Name-based Linking. This rule refers to exact or partial occurrences of the column/table names in

the question, such as the occurrences of“player” in the question in Figure 1. Textual matches are the

most explicit evidence of table-question alignment and, as such, one might expect them to be directly

beneficial to the table-question alignment module.

Value-based Linking. Table-question alignment also occurs when the question mentions any values

that occur in the table and consequently participate in the table-cell selection, such as“the second most”
in Figure 1. While it is common for examples to make the alignment explicit by mentioning the column
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Fig. 1 Example from the HybridQA dataset. The top sentence is the original question, and words in different colors
show different parts of questions required for reasoning in different modalities. The two headers in blue-dashed boxes
are column names aligned with the given question. TACR first uses a method based on table-question-alignment to
align the original question with table columns to help obtain golden table cells and then retrieve the final answer based
on linked passages.

derive answers. Such models retrieve evidence from different granularities, coarse-grained (e.g., row or

column) or fine-grained (e.g., cell), and directly use a span-based reading comprehension model to reason

the answer.

(Kumar et al. 2021), for example, chooses coarse-grained regions as evidence, e.g., a table row. (Chen

et al. 2020) and (Eisenschlos et al. 2021), however, focus on fine-grained units, table cells, and linked

passages. To preserve the advantages and eliminate the disadvantages of different-granularity evidence,

(Sun et al. 2021a) propose MuGER,2 which performs multi-granularity evidence retrieval and answer

reasoning.

(Wang et al. 2022) conducts extensive experiments to prove that a coarse-grained retriever contributes

less than a fine-grained retriever. Moreover, fine-grained methods, although giving an exact position of

candidate cells, fail to illustrate why the selected cells are chosen, while our method is based on row

and column selection probabilities. We thus further extend the fine-grained method by aligning questions

with tables, letting our approach know which parts of questions are accounted for by which modalities.

Intuitively, multi-hop questions in the text-table QA task usually contain two pieces of information from

different modalities, tables and passages. Moreover, tables and passages are connected with evidence

contained in tabular data. Our method implicitly decomposes the questions for different modalities to

locate evidence and improve cell-selection accuracy.

As illustrated in Figure 1, an example from the HybridQA dataset shows how humans work on multi-

hop and multi-modal QA tasks. The original question "What is the middle name of the player with the

second most National Football League career rushing yards ?" can be divided into two parts, "What is the

2

Figure 2 TACR model architecture. From left to right, we first construct a hybrid alignment dataset

to jointly train the table-question-alignment and table-cell-selection modules. We then con-

catenate filtered linked passages with selected top-k candidate cells as paragraphs and feed

them into a text-based multi-hop QA module to retrieve answers.

for retrieving answers. Figure 2 shows the overall architecture of TACR.

3.1 Task Definition

Given a question Q (a sequence of tokens) and N rows of table T together with linked passages

P , where each table column has a header hi=M
i=1 (M is the number of table headers), the task is

to find a candidate cell ci,j that contains the answer α.

3.2 Data Construction

We generate multi-hop questions from tables and linked passages. At the same time, we

also generate table-question alignment labels from questions and table columns for training the

table-question-alignment module. However, such supervision information is not offered in the Hy-

bridQA dataset and other text-table QA datasets, which makes the alignment task difficult. We

use an unsupervised text-table QA-generation method to generate questions as well as alignment

labels.

Alignment Generation. We follow the settings of the MQA-QG method (Pan et al. 2020),

using a pre-trained Google T5 (Raffel et al. 2019), fine-tuned on the SQuAD dataset (Rajpurkar

et al. 2018), to generate multi-hop questions from tables and passages based on a bridge entity,

a table cell that contains the bridge entity, and a linked passage that describes the bridge entity.

The bridge entity is critical in reasoning because it connects the tables and passages, which are

difficult to locate in the original HybridQA dataset.
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Such bridge entity provides us with additional information to align table headers with gener-

ated questions based on the column containing golden cells and the column containing the bridge

entity. We align the columns that contain bridge entities and answers to questions following two

schema-linking alignment rules:

Name-based Linking. This rule refers to exact or partial occurrences of the column/table

names in the question, such as the occurrences of “player” in the question in Figure 1. Textual

matches are the most explicit evidence of table-question alignment and, as such, one might expect

them to be directly beneficial to the table-question alignment module.

Value-based Linking. Table-question alignment also occurs when the question mentions

any values that occur in the table and consequently participate in the table-cell selection, such as

“the second most” in Figure 1. While it is common for examples to make the alignment explicit

by mentioning the column name (e.g., “Rank”), many real-world questions do not (like in the

example). Consequently, linking a value mentioned in the question to the corresponding column

also requires background knowledge.

3.3 Passage Filtering

In this stage, we aim to filter out linked passages unrelated to a question, namely keeping

almost noise-free passages for the following modules. Moreover, the total number of tokens in

passages linked to table cells can be large, exceeding the maximum input sequence length of

current LMs. Thus, we utilize Sentence-BERT (Reimers and Gurevych 2019) to obtain question

and passage embeddings and rank the top-k sentences based on their text similarities. We expand

the cells with the filtered top k-related sentences to both fit in the max input length of language

models and to preserve the useful information from passages. More details on this stage are

provided in Section 4.9.

3.4 Table Alignment & Cell Selection

In this stage, we jointly train a multi-task model based on the ALBERT architecture with the

objectives of selecting the expanded cell that contains the answer and table-question alignment to

different modalities to enhance the previous objective. TACR accepts the full table as inputs and

outputs the probabilities of selected cells based on the probabilities of row and column selection.

3.4.1 Table-Question Alignment

Given a natural language question Q =
{
q1, ....q|Q|

}
, a table consisting of several column

headers C =
{
c1....c|C|

}
, and the corresponding table-question alignment labels L =

{
l1, ...l|C|

}
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where li ∈ [0, 1] (0 meaning the column header is unrelated to the question Q and 1 meaning the

column header is related to Q). The goal of our table-question alignment module is to learn the

relevance between table-column headers and questions. Table-question relations aid TACR by

aligning column references in the question to the corresponding table columns.

We first feed the questions and table columns into the pre-trained model and map them into

hidden representations. The question and table-column headers can be denoted as
{
q1, ....q|Q|

}
and

{
c1....c|C|

}
, respectively. Our goal is to induce a function f(q, c) to capture the relevance of a

question q has on the representation of column header c. The supervision information for training

the table-question alignment module is the label we generated from the data construction. Figure

3 shows the structure of the alignment module.

Specifically, we use ALBERT (Lan et al. 2019) as the encoder to learn the representations

of tables and column headers. Here we concatenate column headers as a pseudo sentence. The

representations of the question (hq ∈ RQ×d) and the column headers sequence (hc ∈ RC×d) are

first computed independently, d is the dimension of the hidden representation. The relevance

between header and question where each column header ci is the target of the question is then

given by using softmax. The respective equations are as follows:

hq = BERT(Q), (1)

hc = BERT(C), (2)
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Fig. 4 Heatmap of question and table-header relevance - Case 1

Fig. 5 Heatmap of question and table header relevance - Case 2
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of 32. We set the per-GPU train batch size to 16 while training the span-based QA model. Final answers

are evaluated using EM and F1 scores. We also automatically iterated through increments of 0.1 in the

range [0, 1] to select the best σ to balance the multi-task training.
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name (e.g.,“Rank”), many real-world questions do not (like in the example). Consequently, linking a

value mentioned in the question to the corresponding column also requires background knowledge.

Fig. 3 The table-question-alignment module of TACR. We treat the alignment objective as a similarity learning
task.

3.3 Passage Filtering
In this stage, we aim to filter out linked passages unrelated to a question, namely keeping almost

noise-free passages for the following modules. Moreover, the total number of tokens in passages linked

to table cells can be large, exceeding the maximum input sequence length of current LMs. Thus, we

utilize Sentence-BERT (Reimers and Gurevych 2019) to obtain question and passage embeddings and

rank the top-k sentences based on their text similarities. We expand the cells with the filtered top k-related

sentences to both fit in the max input length of language models and to preserve the useful information

from passages. More details on this stage are provided in Appendix 4.9.

3.4 Table Alignment & Cell Selection
In this stage, we jointly train a multi-task model based on the ALBERT architecture with the objectives

of selecting the expanded cell that contains the answer and table-question alignment to different modalities

to enhance the previous objective. TACR accepts the full table as inputs and outputs the probabilities of

selected cells based on the probabilities of row and column selection.
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Fig. 2 TACR model architecture. From left to right, we first construct a hybrid alignment dataset to jointly train the
table-question-alignment and table-cell-selection modules. We then concatenate filtered linked passages with selected
top-k candidate cells as paragraphs and feed them into a text-based multi-hop QA module to retrieve answers.

other text-table QA datasets, which makes the alignment task difficult. We use an unsupervised text-table

QA-generation method to generate questions as well as alignment labels.

Alignment Generation. We follow the settings of the MQA-QG method (Pan et al. 2020), using a

pre-trained Google T5 (Raffel et al. 2019), fine-tuned on the SQuAD dataset (Rajpurkar et al. 2018), to

generate multi-hop questions from tables and passages based on a bridge entity, a table cell that contains

the bridge entity, and a linked passage that describes the bridge entity. The bridge entity is critical in rea-

soning because it connects the tables and passages, which are difficult to locate in the original HybridQA

dataset.

Such bridge entity provides us with additional information to align table headers with generated ques-

tions based on the column containing golden cells and the column containing the bridge entity. We align

the columns that contain bridge entities and answers to questions following two schema-linking alignment

rules:

Name-based Linking. This rule refers to exact or partial occurrences of the column/table names in

the question, such as the occurrences of“player” in the question in Figure 1. Textual matches are the

most explicit evidence of table-question alignment and, as such, one might expect them to be directly

beneficial to the table-question alignment module.

Value-based Linking. Table-question alignment also occurs when the question mentions any values

that occur in the table and consequently participate in the table-cell selection, such as“the second most”
in Figure 1. While it is common for examples to make the alignment explicit by mentioning the column

6

Figure 3 The table-question-alignment module of TACR. We treat the alignment objective as a simi-

larity learning task.

196



Wu et al. A Table Question Alignment based Cell-Selection Method for Table-Text QA

f(q, c) = softmax(hc × (hqW )T + b). (3)

where W ∈ Rd×d and × is cross product. The f(q, c) is the probability of the relevance.

3.4.2 Table-Cell Selection

Inspired by the previous idea of modeling the attention on rows and columns (Eisenschlos et al.

2021), we design a cell-selection module based on row and column selection. The probabilities

of each row and column are given and the cells with the top-k highest scores are returned as

the candidate answers, or to aid in locating the relevant passage. However, unlike in MATE

(Eisenschlos et al. 2021), we can derive probabilities of candidate cells from the probabilities of

row and column.

We utilize the Row-Column-Intersection (RCI) model, designed for the single-hop table-QA

task (Glass et al. 2021) (based on ALBERT (Lan et al. 2019)), as our backbone and decompose the

table QA task into two subtasks: projection - corresponding to identifying columns; and selection

- identifying rows. Every row and column identification is a binary sequence pair classification.

We concatenate the question as the first sequence and the row or column as the second sequence.

We feed concatenated two sequences, with standard separator tokens [CLS] and [SEP ], as the

input to the model. The representation of the final hidden state is sent to the linear layer, followed

by a softmax to classify whether the column or row contains the answer or not. Each row and

column is assigned a probability of containing the answer. This module finally outputs the top-k

cells with the sum of row and column probabilities. Therefore, given a table T with N rows and

M columns, we can obtain two sets of scores produced from the RCI model: Pr = p1, ....pN for

rows and Pc = p1, ....pM for columns. We then calculate the overall probability score for each

cell.

The final training loss is the summation of table-question-alignment loss, table-row-selection

loss, and table-column-selection loss:

L = L row+ L column

+ σ × BCE(pred headers, target headers),
(4)

where σ is a hyper-parameter to balance cell-selection training and table-question-alignment

training. The details of choosing the best σ are provided in Section 4.11.

3.5 Passage Question-Answering

Previous research often simply treats the answer-reasoning task as a span-extraction task,

considers the first span matching the answer text as the gold span, and uses that for training.
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Such consideration is incorrect because the answer text may appear in multiple passages, but

only one of them is right. Therefore, using all text matches for training span extraction may

introduce a large amount of training noise. As not all instances are the gold answer text that

has relations with questions, after obtaining the top-k cells from the cell-selection module, we

train the text-based QA module to predict the final answer that also takes into account the cell-

selection scores. In inference stage, for answer appears in multiple cells, the QA model extracts

the k candidate answers from different k candidate cells and output the answer with the highest

score as the final answer. For answer appear in the same cell multiple times, the QA model

extracts all answers and also output one answer with the highest scores.

Specifically, we select clean training instances where the gold answer text appears only once

and train an initial QA model. In this stage, we use RoBERTa (Liu et al. 2019) as our backbone

model. Other BERT variants, e.g., either SpanBERT (Joshi et al. 2019) or DeBERTa (He et al.

2020), could be also used in this module. Our goal is to obtain a span s in a given expanded table

cell c with its filtered passage p and the input question q. We compute a span representation as

follows:

hstart = RoBERTar(q, c)[START(s)], (5)

hend = RoBERTar(q, c)[END(s)], (6)

Sspan(q, c) = MLP([h start, h end]). (7)

where the hstart and hend denote the corresponding position of the answer in the expanded cell

c. The Sspan(q, c) denotes the logits of the start and end positions of the answer span. We also

consider other cells in the same row as the retrieved candidate gold cells as the necessary context.

We linearize and concatenate the row into a passage with the designed template: “The <column

header> is <cell content>”. We retrieve the top-k cells and thus have k samples. Since not all

selected cells contain the gold answer text, we treat one sample as positive and the others as

negative samples. For each data point, we generate k samples and match these with the answer

text. Let K = {qi, Ai, P
+
i , P−

i,1, . . . , P
−
i,k−1}ki=1 be the training data that consist of k instances,

where k is the number of selected candidate cells. Each instance contains one question qi, the

gold answer text Ai, and one correct (positive) passage text P+
i , along with k−1 wrong passages

P−
i,j . For positive samples, the answer is the text span of the passage, while for negative samples,

the answers are −1.

For the instances with noise information like gold text appears many times, we here just apply

the well-trained QA module and output the answer spans with the highest scores.
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4 Experiment

4.1 Datasets

For training a table-question alignment module, we utilize the MQA-QG to unsupervisedly

generate supervision information on the HybridQA dataset that adds the labels on table headers

and questions.

For train and evaluate the performance of cell-selection and QA, we utilized HybridQA and

WikiTableQuestions. HybridQA (Chen et al. 2020) is the first large-scale multi-hop QA dataset

that requires reasoning over hybrid knowledge, including tables and linked Wikipedia passages.

The dataset contains 62,682 instances in the training set, 3,466 instances in the development set,

and 3,463 instances in the test set.

WikiTableQuestions (Pasupat and Liang 2015a), WTQ for short, consists of 22,033 com-

plex questions and 2,108 semi-structured Wikipedia tables. The questions are designed by crowd-

sourcing to contain a wide range of domains. The answers are derived from several operations

such as table lookup, aggregation, superlatives, arithmetic operations, joins, and unions.

To verify the performance of TACR, we first conduct experiments on HybridQA (Chen et al.

2020), a dataset of multi-hop question-answering over tabular and textual data. The basic statis-

tics of HybridQA are listed in Table 1. The dataset contains three partitions: ‘In-Table’, where

the answer derives from table cell values; ‘In-Passage’, where the answer exists in a linked pas-

sage; and ‘Compute’, where the answer should be computed by executing numerical operations.

We mainly focus on the first two types. We also provide results over WTQ to illustrate TACR’s

capabilities in table-focused QA.

4.2 Baselines

MQA-QG, proposed by Pan et al. (2020), is an unsupervised question-generation framework

that generates multi-hop questions from tables and linked passages, and uses the generated ques-

tions to train an HQA model.

Split Train Dev. Test Total

In-Passage 35,215 2,025 2,045 39,285

In-Table 26,803 1,349 1,346 29,498

Compute 664 92 72 864

Total 62,682 3,466 3,463 69,611

Table 1 Statistics of HybridQA dataset
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Table-Only Chen et al. (2020) only retrieves the tabular information to find an answer by pars-

ing the question into a symbolic form and executing it.

Passage-Only Chen et al. (2020) only retrieves answers from the table-linked passages.

Hybrider Chen et al. (2020) addresses HQA using a two-stage pipeline framework to retrieve

the gold table cell and extract an answer in its value or linked passages.

Dochopper Sun et al. (2021b) first converts a table with its hyperlinked passages into a long

document then concatenates column headers, cell text, and linked passages in each row of tables

as a paragraph.

MATE Eisenschlos et al. (2021) applies sparse attention to rows and columns in a table. To

apply it to the HybridQA dataset, the authors propose a PointR module, which expands a cell

using the description of its entities, selects the golden cells, then retrieves answers from them.

MITQA Kumar et al. (2021) designs a multi-instance training method based on distant super-

vision to filter the noisy information from multiple answer spans.

4.3 Quantitative Analysis

We use exact match (EM) and F1 scores as evaluation metrics on the HybridQA dataset to

compare the performance of TACR with that of previous baselines. As shown in Table 2, TACR

outperforms most baselines and achieved competitive performance to state-of-the-art (SOTA)

models (e.g., MITQA) in both EM and F1 scores over the HybridQA dataset. Table 3 reports the

accuracy performance on WTQ. Though TACR is trained on a base model, it presents comparable

accuracy to the large SOTA models and outperforms other base models. It is important to note

that, besides both using much larger LMs than TACR (GPT-3 and BART-large respectively,

versus RoBERTa-base), neither Binder nor Omnitab-large provide explainability. With the help

of the table-question-alignment module, TACR boosts relative accuracy by +18.5% on the test

set compared with RCI (Glass et al. 2021), which is also based on cell selection. This competitive

performance is mainly based on the high cell selection along with table-question alignment. We

further verified the effectiveness of the table-question-alignment module in an ablation study

discussed in Section 4.5.

4.4 Qualitative Analysis

We compare the cell-selection accuracy of TACR and baseline models, as shown in Table 4.

The high cell selection accuracy is based on the high row- and column-selection accuracies shown

in Table 5. On the HybirdQA dataset, TACR shows SOTA performance and 0.4% higher than

that of MATE (Eisenschlos et al. 2021) in the top 3 cell-selection accuracies due to its 89.3%
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Dev. Test

Model In-Table In-Passage Total In-Table In-Passage Total

EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

Table-Only 14.7 19.1 2.4 4.5 8.4 12.1 14.2 18.8 2.6 4.7 8.3 11.7

Passage-Only 9.2 13.5 26.1 32.4 19.5 25.1 8.9 13.8 25.5 32.0 19.1 25.0

Hybrider (τ = 0.8) 54.3 61.4 39.1 45.7 44.0 50.7 56.2 63.3 37.5 44.4 43.8 50.6

PointR + SAT 66.5 71.8 60.3 69.2 61.2 68.7 64.6 70.1 59.6 68.5 60.1 67.4

PointR + TAPAS 68.1 73.9 62.9 72.0 63.3 70.8 67.8 73.2 62.0 70.9 62.7 70.0

PointR + TABLEETC 36.0 42.4 37.8 45.3 36.1 42.9 35.8 40.7 38.8 45.7 36.6 42.6

PointR + LINFORMER 65.5 71.1 59.4 69.0 60.8 68.4 66.1 71.7 58.9 67.8 60.2 67.6

PointR + MATE 68.6 74.2 62.8 71.9 63.4 71.0 66.9 72.3 62.8 71.9 62.8 70.2

MQA-QG (unsupervised) — — — — — — 36.2 40.6 19.8 25.0 25.7 30.5

Dochopper — — — — 47.7 55.0 — — — — 46.3 53.3

MITQA 68.1 73.3 66.7 75.6 65.5 72.7 68.5 74.4 64.3 73.3 64.3 71.9

MuGER2 58.2 66.1 52.9 64.6 53.7 63.6 56.7 64.0 52.3 63.9 52.8 62.5

TACR (ours) 66.7 70.3 63.4 72.5 64.5 71.6 64.1 69.6 65.4 70.7 66.2 70.2

Human 88.2 93.5

Table 2 EM and F1 results of models on the HybridQA dataset. In-Table and In-Passage subsets refer

to the location of answers.

Model
Dev Test

Acc Acc

TAPEX-Large (Liu et al. 2021) 57.0 57.5

Binder (Cheng et al. 2022) 65.0 64.6

OmniTab-Large (Jiang et al. 2022) 62.5 63.3

TAPAS base (pre-trained on SQA) (Herzig et al. 2020) — 48.8

UnifiedSKG (Xie et al. 2022) 50.7 49.3

TaBERT base (Yin et al. 2020) 51.6 51.4

RCI (Glass et al. 2021) 45.3 41.7

TACR RoBERTa-base (ours) 58.9 60.2

Table 3 Execution-accuracy results of models on WTQ

row-selection accuracy and 98.3% column-selection accuracy, as shown in Table 5. Moreover, by

achieving soft question decomposition (i.e., showing which parts of questions are connected to

reasoning in the different modalities), TACR both improves the explainability of its results and

provides valuable signals for future improvements.
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Model Hits@1 Hits@3 Hits@5

TABLEETC (Ainslie et al. 2020) 51.1 72.0 78.9

LINFORMER (Wang et al. 2020) 77.1 86.5 90.0

MATE (Eisenschlos et al. 2021) 80.1 86.2 90.5

TACR (ours) 83.3 87.8 91.2

Table 4 Comparison of cell-retrieval results on HybridQA dataset (dev set)

Model
HybridQA WTQ

Row Col Row Col

top 1

TACR DeBERTa base 85.1 95.3 53.2 93.9

TACR ALBERT base 86.7 96.1 56.8 94.4

TACR RoBERTa base 86.0 96.2 52.3 94.7

top 3

TACR DeBERTa base 86.2 96.2 57.6 94.2

TACR ALBERT base 88.3 97.1 62.4 95.1

TACR RoBERTa base 87.9 97.3 59.3 94.9

top 5

TACR DeBERTa base 87.5 97.8 59.1 94.8

TACR ALBERT base 89.9 98.3 68.1 95.4

TACR RoBERTa base 89.3 98.4 64.5 95.2

Table 5 Performance of TACR with different backbone models. Top-k rows and columns selection

accuracies on HybridQA and WTQ datasets, where k = 1, 3, 5. Results demonstrate the

effectiveness of TACR.

4.5 Ablation Study

To evaluate the impact of the table-question-alignment module, we conduct an ablation study,

shown in Table 6. We test DeBERTa-base, ALBERT-base, and RoBERTa-base models as TACR

backbones for generality. Different top-k results show that the alignment module consistently

significantly improves results; with the best model based on ALBERT improving cell-selection

accuracy by 2.5, 3.9, and 4.3% in top 1, 3, and 5 cell selection respectively; and mean reciprocal

rank (MRR) improving by 3.7%. The results indicate that the table-question-alignment module

has an important role in the table-question-reasoning stage to select the most related cells that

support the answer to the question.
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Model MRR Hits@1 Hits@3 Hits@5

TACR-DeBERT base w/o alignment 78.9 74.9 79.4 83.7

TACR-Roberta base w/o alignment 80.7 74.3 82.6 84.4

TACR-ALBERT base w/o alignment 80.1 77.1 82.8 85.4

TACR-DeBERTa base w/ alignment 82.4 78.3 83.4 86.2

TACR-RoBERTa base w/ alignment 82.5 76.5 85.5 88.9

TACR-ALBERT base w/ alignment 83.8 79.6 86.7 89.7

Table 6 Ablation study of table-question-alignment module impact. Experiment results of cell-retrieval

on HybridDQA (dev set) show the effectiveness of this module in the table-cell-selection stage.

K MRR Hits@1 Hits@3 Hits@5

top 1 77.4 72.9 76.4 81.8

top 3 81.7 76.3 84.5 85.6

top 5 79.5 75.1 82.4 83.3

Table 7 Ablation study of passage filtration module impact. Experiment results of cell selection per-

formance on HybridDQA (dev set) show the impact of selecting top 1,3 and 5 sentences in the

table-cell-selection stage.

To evaluate the impact of the passage filtration module, we conduct an ablation study in

Table 7. We test the passage filtration module in different top-k sentences on the dev set of the

HybridQA dataset. Top 1, 3 and 5 means we only select 1, 3, and 5 sentences from the passage

and fill in the related cells. The experiment results show that we could get the best performance

when k = 3. Based on our analysis, when selecting only one sentence, it may lose many other

useful information. When k = 5, there are too much information that should be discarded from

passage and damage to the cell selection.

4.6 LLM Evaluation

To evaluate the LLM performance of HybridQA, we introduce ChatGPT (3.5), shown in Table

8 for Table cell selection. Different top 1,2,3 results show that the shot number affects the table

selection performance. We also linearize the table into a sequence and finetune llama to do the

table cell selection. The ChatGPT with 3-shots improves the accuracy by 6.1, 5.2, and 5.0% to 1

shot. The results indicate that the shot numbers could help improve performance and due to the

limitation of the input length of ChatGPT, we can not explore more with the numbers of shots.
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4.7 Case Study

To illustrate TACR can successfully learn which parts of tables contain golden cells and which

parts of questions are required for reasoning in the different modalities, we choose two examples

from the HybridQA development set. Section 4.10 includes Figures 4 and 5 showing their word

relevances heatmap and analysis.

The question in Case 1 is “Who is the athlete in a city located on the Mississippi River ?”. The

concatenated table headers string for the corresponding table is “Year Score Athlete Place”. The

table-question-alignment module helps TACR learn that header terms “Athlete” and “Place” have

higher relevance to the question than the headers of other columns, thus guiding cell-selection.

Figure 4 shows its relevance heatmap. TACR again learns which parts of the question account

for retrieving evidence in tables.

The question in Case 2 is “What is the middle name of the player with the second most

National Football League career rushing yards ?”. The concatenated table headers string for it is

“Rank Player Team(s) by season Carries Yards Average”. The table-question-alignment module

helps TACR learn that the sub-question “the player with the second most National Football League

Model Hits@1 Hits@3 Hits@5

ChatGPT 1shot 63.2 65.7 68.1

ChatGPT 2shots 68.9 70.2 72.2

ChatGPT 3shots 69.3 70.9 73.1

Table 8 The table cell selection performance of LLMs on dev set of HybridQA. We here select 200

samples from the training set for ChatGPT with different shots.

output : 2024/1/11(5:7)

Fig. 4 Heatmap of question and table-header relevance - Case 1

Fig. 5 Heatmap of question and table header relevance - Case 2

performance. AdamW is used as an optimizer algorithm with a learning rate of 5× 10-5 and a batch size

of 32. We set the per-GPU train batch size to 16 while training the span-based QA model. Final answers

are evaluated using EM and F1 scores. We also automatically iterated through increments of 0.1 in the

range [0, 1] to select the best σ to balance the multi-task training.
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name (e.g.,“Rank”), many real-world questions do not (like in the example). Consequently, linking a

value mentioned in the question to the corresponding column also requires background knowledge.

Fig. 3 The table-question-alignment module of TACR. We treat the alignment objective as a similarity learning
task.

3.3 Passage Filtering
In this stage, we aim to filter out linked passages unrelated to a question, namely keeping almost

noise-free passages for the following modules. Moreover, the total number of tokens in passages linked

to table cells can be large, exceeding the maximum input sequence length of current LMs. Thus, we

utilize Sentence-BERT (Reimers and Gurevych 2019) to obtain question and passage embeddings and

rank the top-k sentences based on their text similarities. We expand the cells with the filtered top k-related

sentences to both fit in the max input length of language models and to preserve the useful information

from passages. More details on this stage are provided in Appendix 4.9.

3.4 Table Alignment & Cell Selection
In this stage, we jointly train a multi-task model based on the ALBERT architecture with the objectives

of selecting the expanded cell that contains the answer and table-question alignment to different modalities

to enhance the previous objective. TACR accepts the full table as inputs and outputs the probabilities of

selected cells based on the probabilities of row and column selection.

7

Figure 4 Heatmap of question and table-header relevance - Case 1
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Fig. 5 Heatmap of question and table header relevance - Case 2

performance. AdamW is used as an optimizer algorithm with a learning rate of 5× 10-5 and a batch size

of 32. We set the per-GPU train batch size to 16 while training the span-based QA model. Final answers

are evaluated using EM and F1 scores. We also automatically iterated through increments of 0.1 in the

range [0, 1] to select the best σ to balance the multi-task training.
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Fig. 2 TACR model architecture. From left to right, we first construct a hybrid alignment dataset to jointly train the
table-question-alignment and table-cell-selection modules. We then concatenate filtered linked passages with selected
top-k candidate cells as paragraphs and feed them into a text-based multi-hop QA module to retrieve answers.

other text-table QA datasets, which makes the alignment task difficult. We use an unsupervised text-table

QA-generation method to generate questions as well as alignment labels.

Alignment Generation. We follow the settings of the MQA-QG method (Pan et al. 2020), using a

pre-trained Google T5 (Raffel et al. 2019), fine-tuned on the SQuAD dataset (Rajpurkar et al. 2018), to

generate multi-hop questions from tables and passages based on a bridge entity, a table cell that contains

the bridge entity, and a linked passage that describes the bridge entity. The bridge entity is critical in rea-

soning because it connects the tables and passages, which are difficult to locate in the original HybridQA

dataset.

Such bridge entity provides us with additional information to align table headers with generated ques-

tions based on the column containing golden cells and the column containing the bridge entity. We align

the columns that contain bridge entities and answers to questions following two schema-linking alignment

rules:

Name-based Linking. This rule refers to exact or partial occurrences of the column/table names in

the question, such as the occurrences of“player” in the question in Figure 1. Textual matches are the

most explicit evidence of table-question alignment and, as such, one might expect them to be directly

beneficial to the table-question alignment module.

Value-based Linking. Table-question alignment also occurs when the question mentions any values

that occur in the table and consequently participate in the table-cell selection, such as“the second most”
in Figure 1. While it is common for examples to make the alignment explicit by mentioning the column

6
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Fig. 1 Example from the HybridQA dataset. The top sentence is the original question, and words in different colors
show different parts of questions required for reasoning in different modalities. The two headers in blue-dashed boxes
are column names aligned with the given question. TACR first uses a method based on table-question-alignment to
align the original question with table columns to help obtain golden table cells and then retrieve the final answer based
on linked passages.

derive answers. Such models retrieve evidence from different granularities, coarse-grained (e.g., row or

column) or fine-grained (e.g., cell), and directly use a span-based reading comprehension model to reason

the answer.

(Kumar et al. 2021), for example, chooses coarse-grained regions as evidence, e.g., a table row. (Chen

et al. 2020) and (Eisenschlos et al. 2021), however, focus on fine-grained units, table cells, and linked

passages. To preserve the advantages and eliminate the disadvantages of different-granularity evidence,

(Sun et al. 2021a) propose MuGER,2 which performs multi-granularity evidence retrieval and answer

reasoning.

(Wang et al. 2022) conducts extensive experiments to prove that a coarse-grained retriever contributes

less than a fine-grained retriever. Moreover, fine-grained methods, although giving an exact position of

candidate cells, fail to illustrate why the selected cells are chosen, while our method is based on row

and column selection probabilities. We thus further extend the fine-grained method by aligning questions

with tables, letting our approach know which parts of questions are accounted for by which modalities.

Intuitively, multi-hop questions in the text-table QA task usually contain two pieces of information from

different modalities, tables and passages. Moreover, tables and passages are connected with evidence

contained in tabular data. Our method implicitly decomposes the questions for different modalities to

locate evidence and improve cell-selection accuracy.

As illustrated in Figure 1, an example from the HybridQA dataset shows how humans work on multi-

hop and multi-modal QA tasks. The original question "What is the middle name of the player with the

second most National Football League career rushing yards ?" can be divided into two parts, "What is the

2

Figure 5 Heatmap of question and table header relevance - Case 2

career rushing yards” has a higher relevance to the table headers than that of other parts of the

original question, thus guiding modality relevance. Figure 5 shows its relevance heatmap.

4.8 Error Analysis

To further analyze TACR, we also calculate statistics for error cases in the model predictions.

The error statistics are based on the development set of HybridQA. Through the cell-selection

accuracy statistics in Table 4, we find there are 347 tables whose cells are incorrectly selected.

To better understand the advantages and disadvantages of table-question alignment-based

cell selection, we manually sample and examined 20 such error cases (i.e., where TACR does not

provide the correct answer in the correct row, column, and cell position). Out of the 20 samples,

we find that five error cases (25%) are due to requiring numerical reasoning operations that

cross several cells (which is out of scope for TACR). The majority of errors, 13 of the remaining

incorrect cases, are in the same column with a correct answer while in the wrong row. Only one

case is from a different row but the same column with the correct answer and only one incorrect

case is in a completely different row and column to the correct answer.

4.9 Passage Filtering

Passage filtering plays an important role in cell selection as well as answer extraction. Pre-

trained language models such as BERT, RoBERTa, and LLMs have the limitation of max input

sequence length. Passage filtering ensures that it is unlikely to lose information relevant to the

questions, while fitting model input limits. We used the well-trained DistilBert-based model to
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obtain question and passage embeddings to rank and filter relevant passages.2

4.10 Alignment Analysis

Here we provide example heatmaps showing the relevance of questions and table headers.

The relevance is in the [0,1] range, where the higher relevance between words from questions and

column headers is shown in the warmer colors and vice versa. Figure 4 shows that the column

headers “athlete” and “place” have more relevance to the question, which helps TACR identify

which columns contain potential gold cells. In Figure 5, the words “player with second most

national football league” from the question have more relevance to columns, which help TACR

learn which parts of the question better use to retrieve gold cells.

4.11 Implementation Details

TACR is implemented using Pytorch version 1.13 and the Huggingface transformers (Wolf

et al. 2020) library. We trained TACR using two NVIDIA A6000 GPUs. The cell selection and

table–question-alignment modules are trained for four epochs and we selected the best model

based on the dev fold performance. AdamW is used as an optimizer algorithm with a learning

rate of 5 × 10−5 and a batch size of 32. We set the per-GPU train batch size to 16 while

training the span-based QA model. Final answers are evaluated using EM and F1 scores. We

also automatically iterated through increments of 0.1 in the range [0, 1] to select the best σ to

balance the multi-task training.

Hyper-parameter Details: We tune hyper-parameters based on the loss on the development

set and use the following range of values for selecting the best hyper-parameters:

• Batch size: [8, 16, 32, 64]

• Learning rate: [1e-3, 1e-4, 1e-5, 1e-6, 3e-3, 3e-4, 3e-5, 3e-6, 5e-3, 5e-4, 5e-5, 5e-6]

• σ : [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]

• topK sentence: here we select k = 1, 3, 5 for passage filteration.

• topK cells: here we select k = 1, 3, 5 for cell selection.

5 Conclusion

This paper presents TACR, a Table question Alignment-based cell selection and Reasoning

model for hybrid text and table QA, evaluated on the HybridQA and WikiTableQuestions

2 https://huggingface.co/sebastian-hofstaetter/distilbert-dot-tas_b-b256-msmarco
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datasets. When answering questions given retrieved table cells and passages, TACR attempts to

align multi-hop questions to different modalities for correct evidence retrieval. To enhance the

QA module with better table cell-selection and table-question-alignment ability, we construct

a hybrid alignment dataset generated from the HybridQA dataset. TACR shows state-of-the-

art performance in retrieving intermediate gold table cells and competitive performance on the

HybridQA and WikiTableQuestions datasets, while improving output explainability.

6 Acknowledgments

This paper is an extended version of our preliminary paper (Wu et al. 2023), presented in

Findings of the 61st Annual Meeting of the Association for Computational Linguistics (ACL’23).

We acknowledge the support of Yan Gao and Jian-Guang Lou from Microsoft Research Asia

(MSRA) for the discussions and collaboration on the work.

References

Ainslie, J., Ontanon, S., Alberti, C., Cvicek, V., Fisher, Z., Pham, P., Ravula, A., Sanghai, S.,

Wang, Q., and Yang, L. (2020). “ETC: Encoding Long and Structured Inputs in Trans-

formers.” In Proceedings of the 2020 Conference on Empirical Methods in Natural Language

Processing (EMNLP), pp. 268–284, Online. Association for Computational Linguistics.

Chen, D., Fisch, A., Weston, J., and Bordes, A. (2017). “Reading Wikipedia to Answer Open-

Domain Questions.” In Proceedings of the 55th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers), pp. 1870–1879, Vancouver, Canada.

Association for Computational Linguistics.

Chen, W., Chang, M.-W., Schlinger, E., Wang, W. Y., and Cohen, W. W. (2020). “Open

Question Answering over Tables and Text.” ArXiv, abs/2010.10439.

Chen, W., Wang, H., Chen, J., Zhang, Y., Wang, H., Li, S., Zhou, X., and Wang, W. Y.

(2019). “Tabfact: A Large-scale Dataset for Table-based Fact Verification.” ArXiv,

abs/1909.02164.

Chen, W., Zha, H., Chen, Z., Xiong, W., Wang, H., and Wang, W. (2020). “HybridQA: A Dataset

of Multi-hop Question Answering over Tabular and Textual Data.” ArXiv, abs/2004.07347.

Cheng, Z., Xie, T., Shi, P., Li, C., Nadkarni, R., Hu, Y., Xiong, C., Radev, D. R., Ostendorf, M.,

Zettlemoyer, L., Smith, N. A., and Yu, T. (2022). “Binding Language Models in Symbolic

Languages.” ArXiv, abs/2210.02875.

207



Journal of Natural Language Processing Vol. 31 No. 1 March 2024

Eisenschlos, J. M., Gor, M., Müller, T., and Cohen, W. W. (2021). “MATE: Multi-view Attention

for Table Transformer Efficiency.” In Conference on Empirical Methods in Natural Language

Processing.

Glass, M. R., Canim, M., Gliozzo, A., Chemmengath, S. A., Chakravarti, R., Sil, A., Pan, F.,

Bharadwaj, S., and Fauceglia, N. R. (2021). “Capturing Row and Column Semantics in

Transformer Based Question Answering over Tables.” In North American Chapter of the

Association for Computational Linguistics.

He, P., Liu, X., Gao, J., and Chen, W. (2020). “DeBERTa: Decoding-enhanced BERT with

Disentangled Attention.” ArXiv, abs/2006.03654.

Herzig, J., Nowak, P. K., Müller, T., Piccinno, F., and Eisenschlos, J. M. (2020). “TaPas: Weakly

Supervised Table Parsing via Pre-training.” ArXiv, abs/2004.02349.

Jauhar, S. K., Turney, P., and Hovy, E. (2016). “Tables as Semi-structured Knowledge for Ques-

tion Answering.” In Proceedings of the 54th Annual Meeting of the Association for Com-

putational Linguistics (Volume 1: Long Papers), pp. 474–483, Berlin, Germany. Association

for Computational Linguistics.

Jiang, Z., Mao, Y., He, P., Neubig, G., and Chen, W. (2022). “OmniTab: Pretraining with

Natural and Synthetic Data for Few-shot Table-based Question Answering.” In NAACL.

Joshi, M., Chen, D., Liu, Y., Weld, D. S., Zettlemoyer, L., and Levy, O. (2019). “SpanBERT:

Improving Pre-training by Representing and Predicting Spans.” Transactions of the Asso-

ciation for Computational Linguistics, 8, pp. 64–77.

Joshi, M., Choi, E., Weld, D. S., and Zettlemoyer, L. (2017). “TriviaQA: A Large Scale Dis-

tantly Supervised Challenge Dataset for Reading Comprehension.” In Annual Meeting of

the Association for Computational Linguistics.

Kumar, V., Chemmengath, S. A., Gupta, Y., Sen, J., Bharadwaj, S., and Chakrabarti, S. (2021).

“Multi-Instance Training for Question Answering Across Table and Linked Text.” ArXiv,

abs/2112.07337.

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., and Soricut, R. (2019). “AL-

BERT: A Lite BERT for Self-supervised Learning of Language Representations.” ArXiv,

abs/1909.11942.

Liu, A., Hu, X., Lin, L., and Wen, L. (2022). “Semantic Enhanced Text-to-SQL Parsing via

Iteratively Learning Schema Linking Graph.” In Proceedings of the 28th ACM SIGKDD

Conference on Knowledge Discovery and Data Mining.

Liu, Q., Chen, B., Guo, J., Lin, Z., and Lou, J.-G. (2021). “TAPEX: Table Pre-training via

Learning a Neural SQL Executor.” ArXiv, abs/2107.07653.

208



Wu et al. A Table Question Alignment based Cell-Selection Method for Table-Text QA

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L.,

and Stoyanov, V. (2019). “RoBERTa: A Robustly Optimized BERT Pretraining Approach.”

ArXiv, abs/1907.11692.

Pan, L., Chen, W., Xiong, W., Kan, M.-Y., and Wang, W. Y. (2020). “Unsupervised Multi-hop

Question Answering by Question Generation.” In North American Chapter of the Association

for Computational Linguistics.

Pasupat, P. and Liang, P. (2015a). “Compositional Semantic Parsing on Semi-Structured Tables.”

In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics

and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long

Papers), pp. 1470–1480, Beijing, China. Association for Computational Linguistics.

Pasupat, P. and Liang, P. (2015b). “Compositional Semantic Parsing on Semi-Structured Tables.”

In Annual Meeting of the Association for Computational Linguistics.

Raffel, C., Shazeer, N. M., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., and

Liu, P. J. (2019). “Exploring the Limits of Transfer Learning with a Unified Text-to-Text

Transformer.” ArXiv, abs/1910.10683.

Rajpurkar, P., Jia, R., and Liang, P. (2018). “Know What You Don’t Know: Unanswerable

Questions for SQuAD.” In Annual Meeting of the Association for Computational Linguistics.

Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. (2016). “Squad: 100,000+ Questions for

Machine Comprehension of Text.” ArXiv, abs/1606.05250.

Reimers, N. and Gurevych, I. (2019). “Sentence-BERT: Sentence Embeddings using Siamese

BERT-Networks.” ArXiv, abs/1908.10084.

Sun, H., Cohen, W. W., and Salakhutdinov, R. (2021a). “End-to-End Multihop Retrieval for

Compositional Question Answering over Long Documents.” ArXiv, abs/2106.00200.

Sun, H., Cohen, W. W., and Salakhutdinov, R. (2021b). “Iterative Hierarchical Attention for

Answering Complex Questions over Long Documents.”.

Sun, H., Ma, H., He, X., tau Yih, W., Su, Y., and Yan, X. (2016). “Table Cell Search for Question

Answering.” In Proceedings of the 25th International Conference on World Wide Web.

Wang, B., Shin, R., Liu, X., Polozov, O., and Richardson, M. (2019). “RAT-SQL: Relation-

Aware Schema Encoding and Linking for Text-to-SQL Parsers.” In Annual Meeting of the

Association for Computational Linguistics.

Wang, S., Li, B. Z., Khabsa, M., Fang, H., and Ma, H. (2020). “Linformer: Self-Attention with

Linear Complexity.” ArXiv, abs/2006.04768.

Wang, Y., Bao, J., Duan, C., Wu, Y., He, X., and Zhao, T. (2022). “MuGER2: Multi-

Granularity Evidence Retrieval and Reasoning for Hybrid Question Answering.” ArXiv,

209



Journal of Natural Language Processing Vol. 31 No. 1 March 2024

abs/2210.10350.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T.,

Louf, R., Funtowicz, M., Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite, Y.,

Plu, J., Xu, C., Le Scao, T., Gugger, S., Drame, M., Lhoest, Q., and Rush, A. (2020).

“Transformers: State-of-the-Art Natural Language Processing.” In Proceedings of the 2020

Conference on Empirical Methods in Natural Language Processing: System Demonstrations,

pp. 38–45, Online. Association for Computational Linguistics.

Wu, J., Xu, Y., Gao, Y., Lou, J.-G., Karlsson, B. F., and Okumura, M. (2023). “TACR: A

Table-alignment-based Cell-selection and Reasoning Model for Hybrid Question-Answering.”

ArXiv, abs/2305.14682.

Xie, T., Wu, C. H., Shi, P., Zhong, R., Scholak, T., Yasunaga, M., Wu, C.-S., Zhong, M., Yin,

P., Wang, S. I., Zhong, V., Wang, B., Li, C., Boyle, C., Ni, A., Yao, Z., Radev, D. R., Xiong,

C., Kong, L., Zhang, R., Smith, N. A., Zettlemoyer, L., and Yu, T. (2022). “UnifiedSKG:

Unifying and Multi-Tasking Structured Knowledge Grounding with Text-to-Text Language

Models.” ArXiv, abs/2201.05966.

Yang, Z., Qi, P., Zhang, S., Bengio, Y., Cohen, W., Salakhutdinov, R., and Manning, C. D.

(2018). “HotpotQA: A Dataset for Diverse, Explainable Multi-hop Question Answering.” In

Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,

pp. 2369–2380, Brussels, Belgium. Association for Computational Linguistics.

Yin, P., Neubig, G., tau Yih, W., and Riedel, S. (2020). “TaBERT: Pretraining for Joint Under-

standing of Textual and Tabular Data.” ArXiv, abs/2005.08314.

Yu, T., Zhang, R., Yang, K.-C., Yasunaga, M., Wang, D., Li, Z., Ma, J., Li, I. Z., Yao, Q., Roman,

S., Zhang, Z., and Radev, D. R. (2018). “Spider: A Large-Scale Human-Labeled Dataset

for Complex and Cross-Domain Semantic Parsing and Text-to-SQL Task.” In Conference

on Empirical Methods in Natural Language Processing.

Zhao, G. and Yang, P. (2022). “Table-based Fact Verification with Self-labeled Keypoint Align-

ment.” In International Conference on Computational Linguistics.

Zhong, V., Xiong, C., and Socher, R. (2017). “Seq2sql: Generating Structured Queries from

Natural Language using Reinforcement Learning.” ArXiv, abs/1709.00103.

Zhu, F., Lei, W., Huang, Y., Wang, C., Zhang, S., Lv, J., Feng, F., and Chua, T.-S. (2021).

“TAT-QA: A Question Answering Benchmark on a Hybrid of Tabular and Textual Content

in Finance.” ArXiv, abs/2105.07624.

210



Wu et al. A Table Question Alignment based Cell-Selection Method for Table-Text QA

Jian Wu: He received a bachelor’s degree in computer science from Southwest

University in 2018. He received a master’s degree from the School of Computer

Science, University of Hong Kong. He is currently pursuing a Ph.D. degree in

the School of Engineering, Tokyo Institute of Technology. His research interests

include Natural Language Processing, Question Answering, and Table QA.

Yicheng Xu: He received the bachelor degree in Electronic and Informaion En-

gineering from East China Normal University, in 2020, and the master degree

in Computer Control and Automation from Nanyang Technological University

in 2021. He currently works as a Research Associate in the school of Electrical

and Electronic Engineering at Nanyang Technological University. His research

interests include machine learning, deep neural networks and natural language

processing.

Börje F. Karlsson: He is a researcher at the Beijing Academy of Artificial

Intelligence (BAAI) Now. He received his doctorate in Computer Science from

PUC-Rio, Brazil in 2010 and his BSc from UFPE, also in Brazil. His main in-

terests include machine learning systems, multi-modality reasoning, intelligent

agents, multilingual knowledge pipelines, and digital entertainment.

Manabu Okumura: He received his Dr. Eng. from the Tokyo Institute of Tech-

nology, and is currently a professor at the Institute of Innovative Research.

His current research interests include Natural Language Processing, especially

text summarizing, computer-assisted language learning, sentiment analysis,

and text mining.

(Received July 27, 2023)

(Revised November 1, 2023)

(Accepted December 4, 2023)

211


