
Testing in an Agile Product Development
Environment: An Industry Experience Report

Andreia M. dos Santos∗†, Börje F. Karlsson†, André M. Cavalcante†, Igor B. Correia† and Emanuel Silva†
∗Federal University of Amazonas (UFAM)

Av. General Rodrigo Octávio Jordão Ramos, 3000, 69077-000, Manaus-AM, Brazil
†Nokia Institute of Technology (INdT)

Av. Torquato Tapajós, 7200, 69093-415, Manaus-AM, Brazil

{andreia.santos, borje.karlsson, andre.cavalcante, igor.correia}@indt.org.br,

emanuel.silva@indt.org

Abstract—Product development nowadays requires great focus
on time to market, as well as in quality, in order to meet customer
expectations. Several agile methods and methodologies have been
proposed to tackle the early release of software products and
meet these stringent deadlines. However, in an agile team, the
quality guarantee usually performed by tester groups is directly
affected by these huge changes in the way and time when tasks
are performed during a project; the traditional tester role usually
does not adjust well to these new scenarios. This paper presents
empirical observations on test practices in agile projects. These
projects were developed at Nokia Institute of Technology (INdT)
in the Network Technologies group, where protocol compliance,
performance, low level details, and other requirements have to
be guaranteed. We provide an experience report on agile testing
and identify some important issues in dealing with it and on
adapting the tester role to this kind of environment.

I. INTRODUCTION

The level of consumer demand for software products is

increasingly high, accordingly, factors such as shorter delivery

times and quality in the product or service became more and

more crucial. Problems such as high cost, high complexity,

difficulty of maintenance, and a disparity between the needs

of users and the product being developed, become increasingly

evident in the processes of software development [1].

In order to alleviate this situation, different develop-

ment methodologies have been proposed and implemented

in software development companies. In contrast to traditional

methodologies, the so called agile methodologies (which have

seen wide adoption) focus on different principles and are

known to aim at reducing the bureaucracy associated with

product development activities [2].

In this context emerged The Agile Manifesto [3], from a

gathering of experts in software development who were con-

cerned about the difficulties faced in the traditional methods

of development. The Manifesto presents a set of principles

that define ideal criteria for development processes. The values

to be followed by agile development teams, and which were

described in the Agile Manifesto, are:

• Individuals and interactions over processes and tools;

• Working software over comprehensive documentation;

• Customer collaboration over contract negotiation;

• Responding to change over following a plan.

Testing is a central component of agile software develop-

ment, as several core practices used by agile teams relate to

it. Techniques such as TDD[4], unit testing[5], refactoring[6],

and even best practices to work with legacy code[7] are some

examples. Also, the Agile Manifesto itself relates to testing,

with its emphasis on individuals and interactions, working

software, customer collaboration, feedback and conversations.

In an agile process, the whole team works together at the

same time. As such, traditional test teams need to undergo a

major transformation to adapt to this new reality, since they

must stop being reactive and now play a vital role in the

interaction with the developers, business analysts, and cus-

tomers. This study seeks to provide accounts of experiences in

software development at a research and development institute,

which will report strategies for adapting the testing process

within the reality of an agile development process following

Scrum [8]. To accomplish this goal, an analysis was made

on the principles of the most used agile methodologies and

we seek to confront the position of software testing in the

traditional processes and on agile ones. Also, the evolution of

a agile test "process" is outlined. Although we use Scrum and

our proposal is built on top of its framework, our suggestions

can be applied to different agile methods.

This paper is organized as follows: Section II presents

a brief description about agile methods and testing in the

software development context. Section III describes the case

study used to provide this experience report on agile testing.

Additionally, this section is intended to identify some im-

portant issues in dealing with agile environments and how

to adapt the tester role for this kind of environment. Finally,

conclusions are given in Section IV.

II. AGILE METHODS AND SOFTWARE TESTING

A. Agile development methodologies

According to Ambler [9], the waterfall process of software

development limits developers. Sometimes being a cumber-

some and expensive development process, many organizations

- especially small ones - end up choosing not to use any type of

consolidated process. This fact highlights the need to use agile

methods that are not extremely focused on documentation

[9]. Projects using agile methodologies assume that change

is common in software projects (and software-heavy projects)

and thus value ongoing planning, emphasizing human aspects

and adaptability to rapid changes in features and scope.

While other processes try to address the problems in the

waterfall model with interactions and an incremental approach

(e.g. Rational Unified Process - RUP) they are still viewed

as too rigid and bureaucratic. Currently there are numerous

approaches to agile software development; some of the most

��������������	�	
��
���		���	�������



popular models are Extreme Programming (XP), Scrum, Lean,

and Kanban. No less important and also used by a variety of

organizations are Crystal and Agile Modeling (AM), but all

have the following in common:

• Continuous planning;

• Involving the client in all phases of the project;

• Interactive and incremental process;

• Clear definition of roles;

• Iterations costs and scope well defined;

• Discipline in the workflow.

Fig. 1. Scrum Process Flow [10]

B. Agile Development Environments with SCRUM

Scrum reinforced the idea of empirical process control.

Projects are divided into sprints, which typically last from

one to three weeks. After each sprint, actors and staff members

meet to assess project progress and plan their next steps. Scrum

assumes the premise that software development is a complex

effort and too unpredictable to be fully planned beforehand.

Instead, one must use a defined empirical control process to

ensure visibility, inspection, and adjustment of plans [11]. Fig.

1 illustrates the life cycle in developing projects using Scrum.

Also according to Schwaber [11], using the Scrum agile

process is vital to have the vision of the product to be created.

It is this vision that defines the list of features expected by

the client/sponsor. It stands out from other agile methods for

its greater emphasis on project management (on a strategic

level). Scrum brings together monitoring and feedback in

general with fast and daily meetings involving the whole team,

aiming at identifying and correcting any deficiencies and/or

impediments in the development process as soon as possible

[8]. In this case, the process of product development is really

iterative and incremental, i.e. planning is always ongoing and

from time to time assessments are made about the product

already created and the list of features not yet implemented.

This allows adaptation to changes, since the process itself has

already decided to account for possibilities for change in the

scope of product development.

Scrum has three key roles [8]:

• Product Owner: Responsible for communicating the prod-

uct vision to the team and must also represent the

customer interests through requirements and priorities;

• Scrum Master: Liaison between the team and Product

Owner, but does not manage the team. Instead, he/she

works to remove the obstacles that are blocking the team

from achieving the sprint goal;

• Team Member: Responsible for completing the work.

Cross-functional and empowered to make effort estimates

and take technical decisions.

C. Agile Test and Quality Assurance

As discussed by Rocha et al. [12], quality assurance must

be conducted in all phases of the development process so that

defects are eliminated as close as possible to the phase in

which they are introduced, to avoid increased costs if left

for later steps. When working with agile methods/frameworks

it is no different. According to the SWEBOK [13], software

testing means to verify the dynamic behaviour of a program

via a finite set of test cases, suitably selected from a field of

usually infinite execution paths, through checking the expected

behavior. However, as Crispin and Gregory claim [14], in agile

projects testers do more than just perform tasks of testing

and therefore should also be considered as developers (as the

rest of the team). This is due to the fact that the whole team

is focused on delivering a high quality product and business

value. Testers, or the quality assurance (QA) department, are

no longer viewed as the quality gatekeepers, the team is.

III. CASE STUDY

A series of projects developed at INdT during the last two

and a half years, all using Scrum as the overall management

framework, formed the basis for this study and are briefly

described below. Two of them are more closely presented here

(projects M and N) as they were the main testbed for the

evolution of our current approach to agile tests, but lessons

learned and adjustments performed on the other projects also

provided insight into different issues and served as input for

our better understanding of the problem space.

Project M aimed at a marketing system to reward mobile

phone usage. Users would accumulate credits that could be

converted into minutes when making calls or used to buy prod-

ucts and services from partner companies. The system works

like a loyalty program similar to the mileage programs offered

by airlines around the world. The project was developed in two

phases and was composed of backend system, mobile clients

and web client. It was developed for over one year and trialed

with final users and a partner company in Brazil.

In project N, the goal was to provide a flexible billing

platform for pre and post paid mobile users, based on specific

business rules for listed protocols and URLs; with differenti-

ated billing by data connection. A real-time monitoring tool

displaying information on data usage per user was also created.

A prototype version of the system was created and interacted

with different pieces of equipment inside a mobile operator

network. A new project is now building on the created system.

Additionally, three other projects also served as learning

sources and their experience was used as input on tailoring our

current approach. Projects T1 and T2 involved the reception

and decoding of digital TV transmissions on mobile phones.

T1 includes adaptations to a hardware device for reception

of the digital TV signal, decoding of the data stream, and

the development of an embedded TV player. T2 involved the

design of a middleware to support interactivity on top of

the previous solution (according to the Brazilian digital TV

standard) and also involved distributed teams.

Finally, project P dealt with the development of a geo-

referenced messaging system with social characteristics. This

project involved both backend and mobile application develop-

ment, had international stakeholders, and was trialed in Brazil

and the US with groups of end users.



While not central to the process reported on this paper,

experiences from projects T1, T2 and P helped inform the

evolution of the test process currently in use and also allowed

us to analyze the same issues from different points of view.

A. Project Characteristics Analyzed

In order to have this study better serve as guidelines for

new teams facing agile tests we decided to focus on the point

of view of a new team, quite green into agile development.

The same core team participated in project M during the

development of the first prototype and then during the second

phase of the project. And the same test focused team members

moved to project N. So this is the timeline we follow to

comment on test process evolution.

There were many challenges faced by the team during phase

1 of project M, and specially by the testers on the team, since

they were new to agile tests and the number of people focused

on this function was very small (one test analyst and one

intern). Also, in line with allowing the team to have autonomy,

there was no top-down imposed standard process.

The first approach at project M was to define test cases

soon after the Sprint Planning meeting, immediately after the

definition of which stories to develop in a given sprint, and

in parallel to code development. Even though the idea of

developing both code and tests in parallel was right, there

was an informal separation of the team into two sub-teams:

a development team and a testing team. This led to the test

run only starting after all development was complete. As

the "handover" to testing happened late and the number of

test-focused team members was small (2), the testers got

swamped with too many tasks and too little time, and were

not able to test everything into the sprint. Some stories were

not completed because tests were not performed. Also, the

test team relied heavily on the programmers to set up the test

environment for execution.

Similarly to many new teams into agile, this quickly leads

to a micro waterfall cycle were testing comes after coding

is completed, but before the next iteration. Unfortunately, if

development takes longer than anticipated or there was an

estimation error, there is only a small timeframe for the tests.

Not only testing has little time, but when bugs were identified,

there was not enough time to fix them and re-test before the

sprint was over.

In trying to fix the issues, the team’s second approach was to

run the tests after completion of the current sprint, i.e. features

would be broken into two stories; the first (development)

happening on a sprint, and the second (testing) only happening

on the following sprint. This approach led to stories (features)

being considered done before actual testing was performed;

giving the team a sense of progress. However, there was

a major hidden problem. Later tests could reveal serious

defects in the system structure and since the test execution

occurred out of phase with feature development, programmers

had already added new features to the system, making the

problem worse and solutions much more complex. Often it

was necessary to remedy a defect immediately, delaying the

features and failing the sprint.

As the project matured the team refined the approach to

testing and started to get convinced that a process where the

whole team did testing was the way to go. Being pro-active

and automating test cases were the main axes of this process.

According to Crispin and Gregory [14], the key factors for

a successful agile testing approach are:

• Look at the Big Picture;

• Collaborate with Customer;

• Build the Foundation for Agile Core Practices;

• Provide and Obtain Feedback;

• Automate Regression Testing;

• Adopt an Agile Testing Mindset; and

• Use the Whole Team Approach.

Having this in mind, and the team real-life experience

with the issues described, the underlying problems with the

previous approaches were discussed and a new model was

gradually adopted. Under this paradigm the team sought to

adapt to the new reality of agile development and at the same

time, guarantee the quality of each sprint deliverable.

B. Testing in an Agile World

There were many doubts about the role of test analysts

and testers in general within the agile philosophy, and also

specifically in Scrum. Where do programmers and testers fit

in a new agile project? How can there be code and tests in

such short interactions? Who is in charge of avoiding defects

getting to production? In the recent literature [14] it is argued

that the role of software testing in an agile methodology can

be represented by four quadrants (shown in Fig.2).

Programmers write unit, component-level, and integration

tests to make sure the smaller units of code work together as

intended. These are all critical to a successful project. Marick

[15] describes these types of tests as "supporting the team"

as they help programmers know they have a solid base and

decide what to code next. Also they facilitate changes to the

system by serving as a guarantee that unintended changes do

not get into the system.
 

 

Fig. 2. Agile Test Quadrants

This concept of testing as support for developers is new to

many team members (both programmers and testers) and is

one of the biggest changes from traditional testing. Tests in

quadrants 1 and 2 can be seen more as testable requirements

specification, and design aids, than validation/verification tests.

Tests in Q2, particularly, describe the business details of each

story at a functional level, each one verifying a business

condition. Often these tests duplicate some of the effort at the



unit/integration level; however, these tests are oriented toward

confirming the desired system behavior at a higher level.

Ideally, all of these tests should be run as part of an

automated continuous integration (CI), build, and test process.

During project M the team reached this same conclusion and

decided to setup a CI server. We are now moving towards a

common CI environment for most development projects in the

Networking Technology group.

Quadrant 3 contains the business-facing tests that prod the

created software to check if it does not meet expectations or

lacks functionality. These business tests try to emulate how

real users would use the system and identify its shortcomings.

Automated processes can be used to help generate data, but

this is usually only manual testing. Often users perform these

types of tests as some kind of user acceptance testing (UAT).

Exploratory testing, as in Q3, is not ad hoc testing, which

is impromptu and improvised. In exploratory testing, a tester

designs and performs test scenarios, analyzing the results.

The types of tests that fall into quadrant 4 are again

technology-focused and intended to critique non-functional

requirements such as performance, scalability, robustness and

security. An approach to them is to quantify measurements and

the acceptance criteria for each story, or to deal with them as

specific stories.

C. Evolution of the Agile Test Process

Different practices and strategies are used for test activities

by different agile methods. In Scrum, tests are usually rep-

resented as tasks to be executed during a development sprint

(that deliver a increment of potentially shippable software),

or story may have the sole purpose of performing test-related

tasks, code improvements and defect corrections. Nonetheless,

a feature is only ready to be delivered to the customer

after undergoing integration, functional and system tests. It

is extremely important to include testing in estimates of story

size as, in some cases, testing a piece of functionality might

take longer than coding.

Bellow we outline the employed test strategies as they

evolved during the presented projects and then we describe

our current validation and verification model.

During the first stage of project M, the project team decided

on a test strategy composed of: white box tests, to be per-

formed during functionality development; black box tests, to

test functionality implemented during the iteration; Definition

of test cases, test cases should be documented in a test plan,

be them automatic or manual; Integration tests, to be run

as in each iteration test plan and to generate error reports;

Bug fixing, to address issues discovered during testing, bugs

found are prioritized and distributed among team member for

correction; and QA Audit, for monitoring the iteration, to

check the status of activities and make changes in the plan if

necessary. Later, stress tests and regression tests were included.

Fig.3 shows some more detail on the test strategy during this

phase, along with some metrics.

This was a first team attempt at properly using tests in

an agile project and reflected some of the issues mentioned

regarding the internal separation of the team between program-

mers and testers, as well as the reliance on the old policy of

QA as quality gatekeepers. After problems with this approach

were identified, the team started refining the strategy and

moving to a new model, involving more members of the team

on the test-related tasks.

Fig. 3. Initial Test Strategy

On project M’s second phase, after the proof-of-concept

system was approved, and taking into account the lessons

learned in the previous phase, the team felt more comfortable

in structuring a more efficient process for quality assurance.

At this point a new strategy was defined were the team

decided that functional tests should be automated (as much as

possible) and continuous integration (CI) was introduced into

the development process to better take advantage of frequent

automated testing (unit/integration/functional). Fig.4 illustrates

the new testing process. However, one can note that there was

still some functional separation of testers and programmers in

this flow. In this stage the team also defined a set of validation

and verification criteria to be applied to development and to

the closeout of each sprint and release candidate.

The regularity of deliveries (builds or deploys) during a

sprint, is defined by the team during sprint planning, as it

depends on the features to be implemented in the iteration.

A "Delivery Package" (DP) was created to represent the

final deliverable of a sprint and some metrics and procedures

to be followed were specified. This package would include

a "Release Notes" describing the implemented requirements

(according to the backlog), a report of all executed tests

(manual and automated), and a list of known defects (also

documented in a DTS system). At the end of a sprint, team

and PO would review the information, re-prioritize stories, and

plan what to do with the remaining open bugs (if applicable).

It was also documented in the development process that, for

every sprint: a certain percentage (defined by the team) of code

shall be covered by unit testing; the number of major defects

shall be less than or equal to 3 (no blocker defects); and all the

evidences of attaining the Sprint Goal (as defined by the PO)

would be summarized in a presentation. It was also decided

that for every sprint that should result in a release candidate



(RC) for the client, a story of verification and validation must

be executed, to make sure that:

• All test cases are reviewed and executed by the team;

• No blocker, critical or major bugs are open;

• Only a reduced number of minor defects are still open;

• The presentation of the work package is ready for PO

review and presentation to clients.

Requirements

Project Analysis and 
Planning

Project development 
TeamTest Team

Project
Development

Test Analyst 
write test cases

to the
history in Testink

Test Analyst 
develops the

Unit Tests

Execution
of Unit
Tests

Bugs
found

Test Analyst defines
the test strategy,

and
prepares the
environment

Test team automate
all possible tests

Test team execute
the tests

Test Analyst 
execute the

regression tests

Project
development

team fixes
the bugs 

found

Re-test and
re-execution of
regression tests

Tests execution
report

Project Team and 
PO plan the fix of 

open bugs

Fig. 4. More concrete Test Process

The results showed significant improvement not only in

bugs fixing and overall quality of deliverables at each sprint,

but also on development speed, communication with the PO

and, consequently, on the development flow as a whole.
As previously mentioned, after project M, the team mem-

bers most involved in testing started working in project N

with another group of developers. Some changes were then

introduced to the test process (4) to further improve it. More

effort was put into the whole-team approach to testing as

some artificial boundaries still existed and were considered

as hindering the team. Automated tests for bugs found (and

not previously covered by any test case) were added to the set

of regression tests.
Also, some automated functional tests were added to the

regression suite. However, one important issue surfaced during

project development. Due to specifics of the project, data

traffic needed to be generated by actual mobile phones and

this data would then go through some networking hardware

before reaching some modules of the system. As the hardware

was also part of the solution being developed, many tests

(and regression tests) needed to be performed manually, what

slowed development and diminished somewhat the benefits of

using CI. Later a hardware simulator was created to generate

the network traffic and event dispatched by the equipment

and the regression test are now being automated. Nonetheless,

many functional tests cases still need to be performed by hand,

but the benefits of the additional frequent automated tests far

surpass the effort of the automation.

D. Common Problems and the Whole-team Approach

Even though some of the people involved on these projects

had previous experience with agile projects (including some

of the authors), in line with the idea of agile teams having

autonomy for technical decisions, there was no top-down de-

fined process at first. The premise was that the team needed to

identify shortcomings in the test process and propose solutions

to those. As expected, some common problems surfaced at

different times during the case study timeframe. Some of

the most important were: programmers left responsibility for

quality in the hands of the testers (who were powerless to make

changes to the process by themselves); testers got frustrated

that testing was getting squeezed at the end (iterations were

over before stories could be tested); testers acting as quality

police; team afraid of making bugs visible during development.
 

 

Fig. 5. Roles in a Story

Focus on team communication and cooperation is

paramount in an agile environment. The whole-team approach

does not limit particular tasks to specific team members. Any

task might be completed by anyone, or pairs of team members.

In testing, this implies that the team takes responsibility for

all kinds of testing tasks, not just the testers. Even when

looking at the story-level, while programmers start to think

about implementation, everyone should always keep a mind on

how one could test the story. Getting people to change habits is

a problem not only for testers, many programmers also present

resistance to performing test tasks as if they are somehow

inferior. Depending on what features are implemented in a

given sprint, different types of tests need to be performed.

Fig.5 shows the typical team member roles most related to in

each test type (but not exclusively either).

It is important to highlight the importance of test-related

tools when it comes to agile development. Projects M and N

made use of: JUnit, for unit testing; Selenium, as automation

tool for web application functional testing; TestLink, for

managing test cases; and Bugzilla, for tracking bugs. Tools

and automation help a long way in freeing programmers and

testers to focus on higher level tasks and concerns.

E. Lessons Learned

The whole-team approach is a paradigm shift for many

developers, but in agile environments (that are focused on

dealing with change) it is extremely important. Having the

team share a workspace helps communications, facilitates

cooperation in performing tasks, keeps everyone aware of the

context of each sprint (especially testers, that usually belong

to other parts of the organization) and help everyone care for

the developed product.



Have a test strategy defined, as well as having clarity about

the whole testing activity, also facilitates team work. A test

strategy helps the team visualize testing activities more clearly

and enables them to better contribute. The definition of done

[11][16] is very important to test planning for each story, so

all doubts about it and the acceptance criteria of each story

must be removed so that there is a common understanding of

the effort by team members.

One of the main points of improvement, according to the

team in Project M was the adoption of CI, as it forced the

implementation of unit testing in every build and functional

testing automation, which reduced execution time of tests and

allowed for quick discovery and fixing of many issues. When

programmers and testers cooperate on automating test, the

whole team realizes that they help create and maintain a safety

net, which enables everyone to accommodate changes with

confidence, as the team will now as soon as possible about any

unintended impact. Testers can then also help with different

tasks in the project, from working with customers to help

write test cases that better define acceptance for upcoming

stories, to pairing with programmers to look for gaps in tests.

Also, when the whole team is comfortable with the new focus

on tests, testers feel more confident and contribute with their

different mindset and points of view on even planning and

design. Team members also realize that more detailed test

specification needs to wait for iteration planning, but that the

team still needs to think about testing at a high level and budget

time for it on each story. Interestingly, if there are no "testers"

in the team (or not enough), other team members start to wear

a "tester hat" for each iteration, writing test cases, performing

manual tests, tracking defects, etc.

Finally, one big issue of confusion between team members

is how to deal with bugs and defects. Every new project faced

this same problem. Our current approach is that intra-story

issues should be solved before the end of the story. These

generally are not fully tracked as bugs, but "bug-tasks" in the

story itself. If some issues are prioritized as minor impact,

they can be put in the DTS or in a bug backlog for dealing

with them later. Bugs that are handy to keep in a DTS are

the ones that are intermittent and hard to track down. When

bugs are pulled to be fixed, they can be placed inside a bug-

fixing story or in a story for a related feature; and the story is

estimated including the effort to analyse and solve them. But

when estimating new stories, team should not pad the effort

estimates to account for possible bugs; the effort necessary for

a feature assumes the best case scenario as it is not feasible

to account for all kinds of problems.

IV. CONCLUSIONS

Our experiences in this set of projects (along the last two

and a half years) highlight the importance of testing within

agile methodologies and of implementing good practices

following the whole-team approach. Although we built our

proposal on top of Scrum, our findings and suggestions can

be applied to different agile methods.

Testing practices support several other agile practices and

values, such as continuous integration, refactoring, and mainly

the adaptability to change during development. All increments

of software must be validated by sets of test cases for unit,

integration and acceptance testing to validate functionality.

Exploratory tests and tests related to the operation of the

system as a whole also should be used to criticize the system

and to make sure that non-functional requirements are met.
The development of a cross-functional team is essential.

Team members need to work closely with one another and

communicate frequently. Basically, making testers think a

little bit more like a programmer and programmers begin to

think more like testers. By automating the tedious, low-level

boundary condition test cases, both testers and developers are

freed to focus on the bigger picture and on customer needs.

Another important issue to note is that it is necessary

to give the team opportunity to make mistakes and discuss

problems and possible solutions. This doesn’t mean that the

team shouldn’t follow best practices or take time to analyze

stories and think through the appropriate architecture and

design. But if bugs initially make it to the next stage, nobody

should be blamed (especially not only the testers). Instead,

the whole team should analyze what happened and start taking

steps to prevent a recurrence. Special attention should be payed

to new teams in agile development to make sure enough time is

budgeted for testing and making sure a feature works. Always!

As Crispin puts it: "If there is no time to test a new feature,

then there is no time to develop it in the first place" [14].

Despite the good results obtained with the proposed model,

it can still be improved to enable the team to better perform,

for example: making better use of continuous integration,

improvements to how to systematically handle bugs, code

coverage for higher level tests, more collaboration between

testers and business team, and an analysis of metrics to try

and identify other weaknesses in the process.

ACKNOWLEDGMENT

The authors would like to thank INdT for the opportunity

to share these findings and all team members in each project

for their support in collecting the data.

REFERENCES

[1] I. Sommerville, Software Engineering. Pearson/Addison-Wesley, 2004.
[2] M. Fowler, “The New Methodology,” 2001. [Online]. Available:

http://www.martinfowler.com/articles/newMethodology.html
[3] K. Beck et al., “Manifesto for agile software development,” 2001.

[Online]. Available: http://agilemanifesto.org
[4] K. Beck, Test Driven Development: By Example. Addison-Wesley,

2002.
[5] G. Meszaros, xUnit Test Patterns: Refactoring test code. Addison-

Wesley, 2007.
[6] M. Fowler, Refactoring: Improving the Design of Existing Code.

Addison-Wesley, 1999.
[7] M. Feathers, Working Effectively with Legacy Code. Prentice Hall,

2004.
[8] K. Schwaber and M. Beedle, Agile Software Development with Scrum.

Prentice-Hall, 2002.
[9] S. W. Ambler, Agile Modeling: Effective Practices for eXtreme Pro-

gramming and the Unified Process. J. Wiley, 2002.
[10] “Mountain Goat Software - Scrum Overview,” 2005. [Online].

Available: http://www.mountaingoatsoftware.com/scrum/overview
[11] K. Schwaber, Agile Project Management with Scrum. Microsoft Press,

2004.
[12] J. C. Rocha, A. R. C.; Maldonado and K. C. Weber, Software Quality:

Theory and Practice. Prentice Hall, 2001.
[13] A. Abran and J. W. Moore, Guide to the Software Engineering Body of

Knowledge (SWEBOK), 2004 Edition. IEEE Press, 2004.
[14] L. Crispin and J. Gregory, Agile Testing: A Practical Guide for Testers

and Agile Teams. Addison-Wesley, 2009.
[15] B. Marick, “My agile testing project,” 2003,

http://www.exampler.com/old-blog/2003/08/21/.
[16] B. Gloger, Scrum: Produkte zuverlässig und schnell entwickeln. Hanser

Fachbuch, 2009.

View publication stats


