
 ContextPlayer: Learning contextual music preferences for
situational recommendations

Karla Okada, Börje F. Karlsson

*
, Laura Sardinha, Tomaz Noleto

* This work was performed while the author was R&D Lead at INdT.

Nokia Institute of Technology (INdT)

Manaus, AM, Brazil

{karla.gomes, laura.sardinha, tomaz.silva}@indt.org.br .

*
Microsoft Research Asia

Beijing, China

borjekar@microsoft.com

Figure 1. Current playing song screen and recommendations carrousel.

Abstract
Music listening is a very personal and situational behaviour,

which suggests that contextual information could be used to

greatly enhance music recommendation experience. However,

making such use of mobile context, while learning user profiles,

is a challenging problem. This case study presents a system for

collecting context and usage data from mobile devices, but

targeted at recommending music via unsupervised learning of

user profiles and relevant situations. The developed data flow

system supports both short enough response times and longer

asynchronous reasoning on the collected data; furthermore, the

mobile phone acts not only as sensor, but the mobile app is

directly tied to the effectiveness of the music service user

experience (UX). This work describes our system design and

discusses issues related to the problem space and to usability

tests on such systems, based on an international user trial.

CR Categories: • Information systems~Recommender

systems • Human-centered computing~Empirical studies in

ubiquitous and mobile computing

Keywords: music, context-awareness, recommender systems.

1 Introduction

Even though music listening is a highly personal and situational

activity, and recommender systems for music are hardly a new

idea, effectively combining contextual data and user profiles in

a music recommendation service is still an open problem.

Context-aware services (CAS) are services enriched with

information from their execution environment, which are able

to adapt to the current context to increase their usability and

effectiveness [Baldauf et al. 2007]. Context-awareness and

adaptation are especially key in mobile scenarios, in which

devices could sense their changing environment and act

intelligently based on it.

It has been shown that, depending on the domain, at least

certain contextual information can be useful for providing

better recommendations [Adomavicius and Tuzhilin 2005, Do

et al 2011]. Moreover, music is one such domain where quality

and usefulness of recommendations can be influenced by

contextual data, since people tend to listen to diverse songs at

different environments or when performing specific activities

[Reynolds et al. 2007].

As people carry their mobile devices everywhere and mobile

content consumption is becoming more and more prevalent,

using the capabilities on these devices (sensors and data access)

provides a promising opportunity to improve users’ music

listening experience.

However, while recently there has been much research on

context-aware recommendation systems [Baltrunas et al. 2011,

Woerndl 2009], most of the work available in the literature

assumes (or proposes beforehand) models for context

representations or for user preferences (mostly based on rating

and ranking). The key difference in our approach is that it tries

to use only implicit feedback and not to make any assumptions

about either users’ preferences or what constitutes proper - a

priori - feature selection.

In this paper, we i) present a system developed to explore the

inclusion of contextual information into the music

recommendation process, based on learning from collected

usage data; and ii) describe the challenges in performing user

experience (UX) evaluation of such systems.

The described system relies on user’s behaviour and music

metadata, i.e. besides usage data, the current system does not

process low-level music features for the recommendations;

song structure is not taken into account, nor is any kind of audio

signal processing.

The remainder of this paper is organized as follows. The next

two sections detail the initial design goals of our music

recommender system and its usage of context. Section 4

describes the system architecture and the developed music

discovery application (along with some reasoning on its

features) with its context-matching engine. Then, in section 5,

the evaluation of the system prototypes is described. Finally,

the paper discusses some limitations of the system and a

summary of the experience in developing and evaluating this

kind of system.

2 ContextPlayer Goals and Design

The opportunity of combining mobile sensing and the personal

nature of music listening activities led us to the question of how

to explore ways in which data on user context can be leveraged

to improve user experience in music listening. Nonetheless, as

we are dealing with dynamic environments, which translate into

increased demands on users’ attention, such system should be

“smart” and as non-intrusive as possible.

Understanding how people interact with their surroundings is

key in this kind of dynamic system [Tarasewich 2003], but

correctly modeling those interactions is a challenge in itself.

Therefore, we have opted for a deployment-driven approach.

This allowed us to gain insights on actual user needs and on

how interesting different ideas would be in the real world.

Finally, a usable interface is critical to any user-facing

application. Especially if one hopes to collect usage information

for analysis that is somehow representative of real-world

scenarios. As such, the app development followed a user-

centered design process [Mayhew 1999] with the following

steps: a) determine system goals; b) identify user needs; c)

sketch out a high-level product design; d) prototype; and e)

iterate design with evaluation results.

The design and development of ContextPlayer focused then on

an early start with concept design/wireframes; not focusing on

yet another music player, but on a new app that intelligently

finds and suggests music content depending on the user

behaviour.

Later, after an initial usability review of the design and

prototype, a production-quality system was developed so that

user trials could be performed and refinements made to its

design.

During the first step in the process, the primary goals defined

for the system were: unobtrusive, implicit feedback; good

responsiveness; UI adapts to user and context; discovery of new

content; and enhance music content during consumption.

To accomplish these goals the system should be responsive,

both in terms of UI interaction and in getting new

recommendations; and be able to properly function in both

online and offline situations, while still able to make use of

different data sources.

More details on the system implementation are described in

section 4.

Figure 2. Main recommendation screen.

2.1 App Overview

The application UI allows the user to explore its local (to the

phone) catalogue of songs and, from usage data, starts to

suggest context-appropriate songs for playing or purchasing.

Figures 1 and 2 show two of the most important screens

according to this concept: a) the current playing screen (center);

and b) the main recommendation screen, respectively.

The main recommendation screen (Figure 2) is the starting

screen for all usage scenarios except the very first startup of the

app and it is the app’s main discovery hub. On this screen, the

current playing song tile is surrounded by the most relevant

song recommendations to play or purchase. By clicking on the

currently playing tile, the user is taken to the currently playing

song panel, which is surrounded by other side-scrollable panels

that provide more music-related information (Figure 1).

Recommendations are derived from the user’s music collection,

usage of the application, and context of usage. Song

discoverability on the app may also use social data, which

allows it to suggest songs based on data from other people that

listen to similar music or perform similar activities.

3 Context

The choice of representation framework for context has a

significant impact on media applications that dynamically adapt

to user needs, and, if flexible enough to address temporal

evolution, can lead to powerful adaptation to user interaction

[Mani and Sundaram 2007].

As such, a lot of effort has been put into creating flexible and

abstract models of context. However, there is a tradeoff

between abstraction and context-sensitivity [Lieberman and

Selker 2000]. To avoid pitfalls in the complexity of the context

model, we pragmatically define context for the purposes of the

application described in this case study as “a finite set of sensed

conditions collected from a mobile device that could affect a

given user’s music-listening behaviour”.

Situations outside this scope are not considered and changes in

user preferences through time are tracked and represented in a

user model, not in the context itself.

Mani and Sundaram [2007] also point out that context attributes

can only be decided on a per application basis and that context

is related to knowledge and cannot be understood independent

from it. These findings are in line with our initial intuition

during brainstorming and helped inform our representation of

contextual information.

Starting from simple information that has proved useful in

context-aware ubiquitous computing [Dey 2001],

ContextPlayer uses activity, environment, location, and time as

key attributes.

Activity information is derived from readings from the device

accelerometer, and its output classifications include: idle,

walking, bicycling, running, etc. The environment attribute is

the results of inferring the type of physical space where the user

is at a given moment by getting audio input samples and

comparing them to a trained database of classified samples.

Possible outputs include: meeting, office, bus, among others.

The location information consists of geographical coordinates

(latitude, longitude), that are clustered into representative

regions. Lastly, time is discretized into five time windows

within a day and into a bucket for each of the seven days in a

week.

These context attributes can be seen, according to the semantic

context interpretation and abstraction layers presented in

[Bettini et al. 2010], as belonging to the High-Level Context

layer, where the lower level sensory information is semantically

interpreted.

Besides the sensorial information, as context is related to

knowledge, we also represent some domain knowledge as part

of the event/context. For this, music metadata is attached to the

context and extra events are generated for addition or removal

of music files from the user device. Data collected from the

web is also used to enhance the available music-related

information.

This representation of context allows the system to detect

contexts such as ‘Every Wednesday in the morning the user

goes jogging and listens to rock songs’ or ‘The user purchases

songs while on the bus during early morning hours on

weekdays’.

4 System Implementation

To realize the goals described in Section 2, the system

combines device-side and server-side components. The basic

dataflow starts with the mobile device acting as sensor,

collecting context and usage information. The data is

transferred to a backend platform (that also handles music-

specific metadata and has access to external data sources) for

processing and generation of recommendations. The resulting

data structures are then returned to the device to be used by the

music discovery app.

Even though most of the data heavy lifting is performed on the

system backend, the mobile client needs to not only detect the

current context, but to have enough data and flexibility to

recommend songs by itself (having some level of autonomy for

cases when the backend is either not available or did not yet

provide new data). As this case study focuses on the mobile

app, the contextual backend platform (CBP) is omitted. More

details can be found elsewhere [Karlsson et al. 2012].

The device-side components of the system can be described as

two separate processes (Figure 3): a Data Provider; and the

Music Discovery Application itself.

4.1 Data Provider

The main responsibility of the Data Provider is to collect three

sets of data for processing: i) music metadata, from each track

on the user’s music library on the device; ii) music listening

habits of the user (which song was played, when, and for how

long); and contextual data (i.e. data from sensors available on

the device), that can later be reasoned over.

Figure 3. Device-side modules.

A set of specialized miners is responsible for gathering data

from a specific context attribute sub-module (activity,

environment, and location). A final music metadata miner

observes both the user's local music library (keeping the system

aware of eventual addition or removal of songs) and the

device’s underlying media framework (for music playing events

to notify the system).

The music playing data is represented in the form of scrobbling

events, annotated with the contextual information at the time of

the event. A serializer layer is responsible for translating the

mined data into intermediary objects, assembling the scrobbling

events structure, and serializing the events.

The distribution engine handles the transmission of the data

streams to the CBP.

4.2 Output from the CBP

Based on the data received from the distribution engine,

augmented by external data sources - e.g. a music catalogue

from an international e-commerce music store, an artist

influence graph, historic song purchase data, etc. - the CBP

generates a user music profile (UMP) and runs a series of

recommenders. The output of these recommenders - playlist

seeds, songs to buy, relevant music events - is then sent back to

the device in an intermediary format to be used after context

matching.

4.3 Music Discovery App

As the app behaviour depends on the user context, its most

important module is the Context Matching Engine (CME). The

CME uses data from the miners and the UMP to decide what

the most relevant recommendations are.

4.3.1 Context Matching Engine

As the CBP receives scrobbling data, it gets more details about

the user music preferences to eventually update the UMP and

append better contextual recommendations. Whenever the

application detects new UMP updates, it fetches this data and

caches it locally to use it as input for feeding context-specific

structures. Relevant contexts in the UMP are represented by

arrays of context attributes.

In order to decide when and what songs to play, the CME takes

three steps: i) query context from the latest sensor readings

(miner cache); ii) search for the best possible match considering

the relevant contexts in the UMP and the seeds associated to it;

and iii) assembly a playlist containing songs based on these. If

eventually the user context changes, the engine decides whether

the current playlist is no longer suitable for the user and

repopulates it with the new context's songs by following again

the aforementioned steps.

At some point, it may happen that a playlist runs out before the

active context changes. In this case, the user would probably

not be satisfied if the player abruptly stops playback whilst

there could be many other possibly enjoyable songs in the

device. There are also the scenarios where the engine does not

find an exact context match, i.e., none of the UMP entries

matches the current context’s attributes. For such cases, the

CME resorts to a cascade of fallbacks, as shown in Figure 4.

Such fallbacks are also useful in the cold start and offline

scenarios, as described below. Context match and fallbacks are

seamlessly integrated.

Figure 4. Cascade of playlist fallbacks.

4.3.2 Application UI

All app usage scenarios are designed around the concept of

having the app just work and the system recommend songs

related to the current user context, without demanding much

effort from the user. When launching the app for the first time,

the user is prompted to loads his/her collection of music files.

As these are recognized by the app, the user sees a new screen

(the Music sea, shown in Figure 5) that represents his/hers

music collection. Once the first of them is played, the main

recommendation panel (MRP) starts to be populated with

different kinds of recommendations – songs for purchase, songs

for the current context, relevant nearby music events, etc; each

type of recommendation having a different tile color.

As the user interacts with the applications, the user profile is

refined, and finer-grained contexts can be identified. Thus, the

relevance of the recommendations will improve dynamically.

However, this process can take time, depending on how much

the user interacts with the app or if connectivity is available.

4.3.2.1 Cold Start and Offline Scenarios

When running the client application for the very first time,

nothing is yet known about the user's music preferences. Hence,

some mechanism must exist to suggest songs in the MRP. If

connectivity is available, the device will show some tiles

recommending top selling songs in that area (based on the

user’s current location, or on a global ranking).

Independently of connectivity, the system will try to execute

the context matching process and, if there is no match, it will go

through the fallback steps shown in Figure 4. As the user still

does not have a UMP at this point, there will be no relevant

context or favorite music genres. Nonetheless, there needs to be

a way of establishing some sort of song relevance metric among

the available songs, giving the user a feeling he/she is not just

listening to a meaningless song sequence. In such scenario, the

system will start two processes: i) building a histogram based

on the songs currently loaded on the device; and ii) loading an

offline-created “artist graph” (deployed with the app).

This artist graph represents a set of artists and their influences.

The graph was manually created by music specialists and

includes 300 popular artists. The histogram of local songs is

used as a proxy for the user music preferences and the graph

provides a measure of local similarity among songs while the

UMP is created. Together they are used to suggest songs that

might be of interest to the user. If, by chance, the user local

music library does not include any song by an artist on the

graph, the system resorts to playing random songs. From the

moment a song is selected to play and scrobbling data is

generated, the UMP starts to be formed.

 Figure 5. Music sea.

4.3.2.2 Purchase, Events, Social, and More

As previously mentioned, the goals of the system include the

discovery of new content and augmentation of music

consumption experience through the addition of related

information and media. This is realized in part in the MRP for

recommendation types. But, more completely, by the panel

carrousel that is side-scrolable from the current playing song

screen (Figure 1). Panels exist for all the different

recommendation types; nearby events; songs other people listen

in similar situations; video clips, news, and Wikipedia

information on the current playing song or on related artists;

and the history of user-listened songs.

5 Experiments and UX evaluation

Evaluation of the quality of a recommender system can be seen

from three different points of view: functional testing, quality

of recommender algorithm output, and usability evaluation.

Functional tests were already part of the development process.

As high precision and recall do not always mean higher user

satisfaction, there is growing consensus that recommender

systems should focus less on the offline evaluation of

algorithms, and focus more on user-centric approaches. Aspects

such as the presentation and interaction have a significant

impact on the user experience [Konstan and Riedl 2012], but

many other factors affect such analysis [Knijnenburg et al.

2012].

To make matters yet more complicated, the developed system

presented in this case study also uses unsupervised learning,

thus individual user experience also varies with usage of the

system. As such, we have opted to focus on a qualitative

evaluation based on UX trials. Trying to more easily single out

specific points in the application usage, some features initially

developed were disabled to reduce the feature space to be

analyzed.

After design reviews, a two-step trial was executed to evaluate

both the concept and the actual contextual recommendations. In

both trials there were no restrictions concerning age or

education level when recruiting users. The only desired

attribute was for them to be active music listeners.

At first, a small test was performed with 10 users - 5 male, 5

female, from age 18 to 32 - focusing on the comprehension of

the recommender concept. For this trial a set of initial tasks had

to be completed by the participants; which later were

interviewed to gather their preferences, needs and opinions on

possible improvements. This first experiment generated 3,704

scrobbling events and allowed us to track how users’ initial to

final perceptions improved.

Some key points from the first trial were:

 All users seemed very interested in the recommendation of

events;

 Six users were initially confused by the lack of direct

control over which songs were played. But, towards the end

of the experiment, most users were satisfied with the system

recommendations (7 out of 10);

 Four of them mentioned that the recommendations

exceeded their expectations. Three users declared to be

always curious to see what the system would suggest;

 While nine of the participants were not used to buy songs

online, all of them considered the experience of discovering

a new song interesting and attractive and commented that

they felt encouraged, by the recommendations, to buy new

songs.

Based on this feedback, refinements were made to the UI and

some minor changes were applied to the system data flow. A

more extensive trial was initiated with 60 users in four different

countries (Brazil, Finland, UK, and the USA), in which 59

users generated additional 22,467 scrobbling events.

Some of the most challenging problems facing mobile

interfaces include the constantly changing context of usage and

the limited user attention given to the device and application

[Heo et al. 2009]. Given that, the intent of this larger trial was

to have users trying the complete system (including

improvements related to feedback from the first trial) without

specific tasks to be performed. Vouchers valued at GBP 80.00

were given to users for song purchases inside the app, as an

incentive to explore and try out the system.

Evaluating a contextual recommender system is a non-trivial

task as many factors are at play at once, and most of the UX

models for recommenders do not include context properly

[Knijnenburg et al. 2012]. We thus follow Kuniavsky’s [2003]

definition of good UX for a system which states that, although

it varies from person to person and task to task, it is possible to

have a good approximation by making the system "functional,

efficient, and desirable to its intend audience”.

In an attempt to represent these effects we map these three key

areas into four related components (perceived quality, appeal,

system-related experience, and outcome-related experience) on

a recent framework for the user-centric evaluation of

recommender systems [Knijnenburg et al. 2012] and use these

as guiding categories in a questionnaire to apply to the trial

users.

Some interesting findings were:

 The majority of users enjoyed the application UI, describing

it as “cool”, “wow-factor”, etc.

 Pieces of the UI were not automatically clear. Many users

had difficulty understanding the situations concept and how

it affected the actual recommendations;

 21 users would prefer to have regular music player features

available to choose specific songs to play;

 Almost all users mentioned that the music sea concept was

interesting, but that having a search function would be

extremely interesting;

 Due to the limited amount of content related to events, 30%

of the users complained about it degrading the app

experience. Even if other recommendations were fine.

 63% of the tested users preferred the system to have faster

recommendations than a system which requires user input

to reveal their preferences;

 For some users, the population of the UMP took a few days

to start improving their recommendations, which caused a

bad impression on the system experience.

Overall, the user feedback was supportive of the app idea for

recommending songs. Nonetheless, almost 50% of the users

had suggestions to improve the notifications of context changes

or the reason for receiving specific recommendations on the UI,

which suggest that even if contextual recommendations are

useful, users are interested in an explanation for them.

Following the experience on the first trial, most users also

highlighted the discovery and purchase of new songs as very

positive.

On the negative side, the exploration of the user library of

songs and the lack of ability to play specific songs were

mentioned by all users as a major problem. How to integrate

both regular player features and recommender features (or

isolate the usability analysis of either) remains an open issue.

Fifteen of the users also did not use any of their bonus for

purchasing songs. Unfortunately, no concrete reason can be

given for this behaviour as the questionnaire did not cover it.

Interestingly - perhaps due to differences in noise level between

situations Brazil and the ones used to train the classifier - the

environment classifier would misclassify the context

environment for Brazilian users and this attribute ended up not

being relevant for their contexts.

6 Problems and Limitations

While the user-centered design process applied to the described

case study helped us to iterate on the system design and explore

the problem space, developing, and evaluating contextual

recommender systems is still a challenge endeavor. Both from

the conceptual and practical points of view.

The distinction between perception and evaluation is subtle but

important; the former denotes whether certain system aspects

register with the user, while the later denotes whether the

perceived aspect has any relevance to the user [Knijnenburg et

al. 2012]. Both aspects should be tracked separately, but due to

the trials’ design, it was not possible to collect data at this level.

The trials suggest that the simple context matching utilized in

this case study provided adequate representation for relevant

contexts. However, we identified extensions points that could

be explored - without the model facing over-generalization

problems - to improve its efficacy. Context attributes such as

user mood or the current weather/season can affect music-

listening behaviour and proxies to track them could be

implemented.

The domain knowledge used along with the context attributes

could also benefit from some form of tagged data (such as song

mood, for example). Tags could be crowdsourced through the

app itself or another music data source might be tapped for it.

As users need to continuous interact with users for the model to

learn their preferences, the bootstrapping could be improved by

smartly exploring recommendations. One possible way for this

would be to use genre information and relationships. This

seems worth of investigation as many users mentioned genre-

based scenarios during the app trials.

Lastly, as multiple context attributes come from classifiers

attaching some semantics to lower-level sensor readings, it

might be necessary to use finer-grained training sets. The

‘environment’ case from the second trial illustrates this point.

On the practical side, multiple issues ended up affecting the

system evaluation. These issues can be categorized as: i)

expectation mismatch; ii) infra-structure / environmental; and

iii) unanticipated usage-related problems.

One example of expectation mismatch was the fact that many

users kept requesting player features when the purpose of the

app was not that. A strategy to make the goal of the system

clear (or to cover the most impactful missing scenarios) is key.

Many of the Brazilian users faced connectivity issues (constant

network switching from 3G to 2G), which caused problems in

the timely population of the UMP, reception of new

recommendations and on the purchase flow of new songs. Even

though we planned for the offline usage scenario, these issues

were more prevalent than expected. Any assumptions on

environmental conditions or infra-structure availability need to

be documented and tracked to avoid compromising the trials.

Moreover, when evaluating the app in a larger scale, even

though it was functionally correct, unexpected issues still

affected the experience of many users. One example of this

turned out to be the reliance on album covers as a major item on

the visual-heavy app UI. While for most songs, the album cover

data could be read from their files’ metadata, this became an

issue in two cases.

Some users had many old music files; from before placing the

album cover in the file metadata was a common practice. This

led to the system being unable to properly show huge amounts

of songs, effectively making it impossible to use. Some other

users had too many songs from compilation albums (songs by

various artist under one collection), resulting in app screens

filled by the same album cover. As they actually represented

different artists, the UI became very confusing.

These issues influenced the study negatively and mitigation

plans should exist for any future experiments. More mini trials

might also have shed light on the two mentioned UI issues,

before the larger scale trial took place.

7 Concluding Remarks

This work presents a case study on a context-aware system for

situational music recommendation whose goals were to explore

the problem space and allow a good degree of quality to the

user experience. The system employs a number of techniques to

deal with the necessary data flow and to generate quality

recommendations. The implementation of ContextPlayer

provided many insights into the challenges of such systems.

Results suggest that the system can properly identify and

recommend songs per context. Even though our experience

raised many interesting issues on how to appropriately design

and evaluate such systems, context-specific music

recommenders are complex and much remains to be explored in

this area, especially when involving social data.

We have also identified the need to associate songs

semantically; hence, we plan to focus more effort on building a

knowledge model to be used for contextual recommendation in

the music domain. Additionally, we intend to extend the CME

to perform in-device analytics for responsiveness and power

optimizations.

References

ADOMAVICIUS, G., & TUZHILIN, A. 2005. Toward the next
generation of recommender systems: A survey of the state-
of-the-art and possible extensions. In IEEE Transactions on
Knowledge and Data Engineering, 17, 6, 734-749.

BALDAUF, M., DUSTDAR, S., ROSENBERG, F. 2007. A survey on

context-aware systems. In International Journal of Ad Hoc

and Ubiquitous Computing, vol. 2, 4, 263-277.

BALTRUNAS, L., KAMINSKAS, M., LUDWIG, B., MOLING, O.,

RICCI, F., AYDIN, A., LUKE, K.H., SCHWAIGER, R. 2011.

InCarMusic: Context-Aware Music Recommendations in a

Car. In 12th International Conference on Electronic

Commerce and Web Technologies.

BETTINI, C., BRDICZKA, O., HENRICKSEN, K., INDULSKA, J.,

NICKLAS, D., RANGANATHAN, A., RIBONI, D. 2010. In A

survey of context modelling and reasoning techniques.

Pervasive and Mobile Computing 6, 2, 161-180.

DEY, A. K. 2001. Understanding and using context. In Personal

and Ubiquitous Computing Journal, 5(1), 4-7.

DO, T. M. T., BLOM, J., GATICA-PEREZ, D. 2011. Smartphone

usage in the wild: a large-scale analysis of applications and

context. In Proceedings of the 13th International Conference

on Multimodal Interfaces.

HEO, J., HAM, D. H., PARK, S., SONG, C., YOON, W. C. 2009. A

framework for evaluating the usability of mobile phones

based on multi-level, hierarchical model of usability factors.

In Interacting with Computers, 21, 4, 263–275.

KARLSSON, B. F., OKADA, K., NOLETO, T. 2012. A Mobile-

Based System for Context-Aware Music Recommendations.

In Artificial Intelligence Applications and Innovations – Adv.

in Information and Communication Technology, 382, 520-

529.

KNIJNENBURG, B.P., WILLEMSEN, M.C., GANTNER, Z., SONCU,

H., NEWELL, C. 2012. Explaining the user experience of

recommender systems. In User Modeling and User-Adapted

Interaction 22, 4, 441-504.

KONSTAN, J.A., RIEDL, J. 2012. Recommender systems: from

algorithms to user experience. User Modeling and User-

Adapted Interaction, 22(1-2), 101-123.

KUNIAVSKY, M. 2003. Observing the user experience. San

Francisco: Morgan Kaufmann Publishers.

LIEBERMAN, H., SELKER, T. 2000. Out of context: Computer

systems that adapt to, and learn from, context. IBM Systems

Journal. 39, 3-4, 617-631.

MANI, A., SUNDARAM, H. 2007. Modeling user context with

applications to media retrieval. In Multimedia Systems, 12,

339-353.

MAYHEW, D. J. 1999. The usability engineering lifecycle. In

CHI'99 Extended Abstracts on Human Factors in Computing

Systems. 147-148. ACM.

REYNOLDS, G., BARRY, D., COYLE, E. 2007. Towards a Personal

Automatic Music Playlist Generation Algorithm: The Need

for Contextual Information. In Proceedings of the 2nd Audio

Mostly Conference: Interaction with Sound, 84–89.

TARASEWICH, P. 2003. Designing mobile commerce

applications. Communications of the ACM - Mobile

computing opportunities and challenges, vol. 46, 12

WOERNDL, W., BROCCO, M., EIGNER, R. 2009. Context-Aware
Recommender Systems in Mobile Scenarios. Intl. Journal of
Information Technology and Web Engineering, 4, 1, 67-85.

