
Caiipa: Automated Large-scale
Mobile App Testing through Contextual Fuzzing

Chieh-Jan Mike Liang‡, Nicholas D. Lane‡, Niels Brouwers∗, Li Zhang?,
Börje F. Karlsson‡, Hao Liu†, Yan Liu/, Jun Tang./,

Xiang Shan./, Ranveer Chandra‡, Feng Zhao‡
‡Microsoft Research ∗Delft University of Technology ?University of Science and Technology of China

†Tsinghua University /Shanghai Jiao Tong University ./Harbin Institute of Technology

ABSTRACT
Scalable and comprehensive testing of mobile apps is ex-
tremely challenging. Every test input needs to be run with
a variety of contexts, such as: device heterogeneity, wireless
network speeds, locations, and unpredictable sensor inputs.
The range of values for each context, e.g. location, can be
very large. In this paper we present Caiipa, a cloud service
for testing apps over an expanded mobile context space in
a scalable way. It incorporates key techniques to make app
testing more tractable, including a context test space prior-
itizer to quickly discover failure scenarios for each app. We
have implemented Caiipa on a cluster of VMs and real de-
vices that can each emulate various combinations of contexts
for tablet and phone apps. We evaluate Caiipa by testing 265
commercially available mobile apps based on a comprehen-
sive library of real-world conditions. Our results show that
Caiipa leads to improvements of 11.1x and 8.4x in the num-
ber of crashes and performance bugs discovered compared
to conventional UI-based automation (i.e., monkey-testing).

Categories and Subject Descriptors
H.3.4 [Systems and Software]: Performance evaluation

Keywords
Mobile app testing; Contextual Fuzzing

1. INTRODUCTION
The popularity of mobile devices, such as smartphones

and tablets, is fueling a thriving global mobile app ecosys-
tem. Hundreds of new apps are released daily, e.g. about
300 new apps appear on Apple’s App Store each day [6]. In
turn, 750 million Android and iOS apps are downloaded each
week from 190 different countries [18]. Each newly released
app must cope with an enormous diversity in device- and
environment-based operating contexts. The app is expected
to work across differently sized devices, with multiple form

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MobiCom’14, September 7-11, 2014, Maui, Hawaii, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2783-1/14/09 ...$15.00.
http://dx.doi.org/10.1145/2639108.2639131.

factors and screen sizes, in varied countries, across a mul-
titude of carriers and networking technologies. Developers
must test their applications across a full range of mobile op-
erating contexts prior to an app release to ensure a high qual-
ity user experience. However, judging from the frequency of
app failures and performance problems after release, it still
seems a far off goal [31]. This challenge is made worse by
low consumer tolerance for buggy apps. In a recent study,
only 16% of smartphone users continued to use an app if it
crashed twice soon after download [30]. As a result, app at-
trition is very high – one quarter of all downloaded apps are
used just once [30]. Mobile users only provide a brief oppor-
tunity for an app to show its worth, and poor performance
and crashes are not tolerated.

Today, developers have only a limited set of tools to test
their apps under different mobile contexts. Tools for col-
lecting and analyzing data logs from already deployed apps
(e.g., [5, 33, 7]) require them to be first released before prob-
lems can be corrected. Through limited-scale field tests (e.g.,
small beta releases or internal dogfooding) log analytics can
be applied prior to public release but these tests lack broad
coverage. Testers and their local conditions are likely not
representative of a public (particularly global) app release.
Inducing issues via fault injection could be used to test con-
sequences of specific situations. However, it requires specific
tools to be available and expertise in choosing which issues to
inject, while also being prone to the creation of inconsisten-
cies [23] (i.e., artificial situations that may not be realistic).

One could use readily available platform simulators ([13,
20]) to test the app under a specific GPS location and net-
work type, such as Wi-Fi. However, in addition to being
limited in the contexts they support, these simulators do
not provide a way to systematically explore representative
combinations of operating contexts under which mobile apps
might be used. Knowledge of previous crashes (either from
the developer’s own experience or from data repositories)
could guide the exploration, but those only cover previously
observed scenarios and don’t map well to performance anal-
ysis. Moreover, even if such data is available, one still has
the problem of analysing it to identify the specific problem-
atic contexts to use for testing; which has scalability issues
if done manually and is noise prone if automatic (e.g., by
association rule mining).

To address this challenge, we propose a new approach to
mobile app testing named contextual fuzzing [10]. This tech-
nique incorporates two key advances over existing alternative
methods such as simulators that simply round-robin over a
limited sets of common conditions. First, apps are exposed

to a large-scale library of diverse contexts synthesized from
the actual conditions observed in the wild. Thousands of
contexts are considered; for example, the throughput and
loss rates observed for Wi-Fi and 3G networks around the
world – rather than only testing expected network behav-
ior as quoted on technical specifications. Second, because
of the wide-range of potential contexts to which an app can
be exposed, a custom app-specific priority order of contexts
is determined. Conditions expected to be highly relevant
to the tested app are applied first in favor of less relevant
ones; for example, an app might be sensitive to poor network
connectivity or low memory conditions and so this category
of contexts will be prioritized over CPU- or GPS-oriented
tests. These two core techniques combine to enable contex-
tual fuzzing to highlight potential problems before an app is
even released to the public.

To demonstrate the power of contextual fuzzing, we design
and implement Caiipa1 – a prototype cloud service that can
automatically probe mobile apps in search of performance
issues and crash scenarios caused by certain mobile contexts.
Developers are able to test their apps by simply providing an
app binary to the Caiipa service. Apps are then monitored
while being exercised within a host environment that can be
programmatically perturbed to emulate key forms of device
and environment context. By systematically perturbing the
host environment an unmodified version of the mobile app
can be tested for context-related issues. A summary report is
then generated detailing the problems observed, the trigger
conditions, and how they can be reproduced. Detailing the
scenarios in which issues happen is especially important for
developers to be able to decide what actions to take.

This paper makes the following contributions:

• We extend contextual fuzzing – a new approach for mo-
bile app testing – by introducing techniques for synthesiz-
ing a comprehensive library of context stress tests from
readily available telemetry data sources. This enables
developers to identify context-related performance issues
and sources of app crashes prior to releasing their apps
(§ 2).

• We develop techniques for the scalable exploration of the
mobile context space. Specifically, we propose a learn-
ing algorithm that leverages similarities between apps to
identify which conditions will impact previously unseen
apps using observations from those apps already tested
(§ 3).

• We design a cloud service, called Caiipa, to which app
developers and testers can submit their apps to identify
context-related problems. This service consists of a pool
of virtual machines and real hardware devices that sup-
port either smartphone or tablet apps, while emulating
a variety of complex context combinations (§ 4).

We evaluate Caiipa using a workload of 235 Windows 8
Store apps (for tablets) and 30 Windows Phone 8 apps based
on a wide-ranging library of 10,504 real-world contexts. Our
experiments show exploring the mobile context space leads
to an 11.1x improvement in the number of crashes discov-
ered during testing relative to UI automation based testing.
Moreover, we find crashes we discover from automated pre-
release testing take at most around 2.6% of the time (for

1
Caiipa means “island of monkeys” in Tupi-Guarani. We adopt this
name because the contextual fuzzing approach provides a diverse en-
vironment for conventional UI-testing to be performed.

94.7% of the crashes) compared to waiting for the same bug
to appear within a commercially available crash reporting
system. Finally, Caiipa is able to identify 8.4x more perfor-
mance issues compared to standard monkeying.

2. CONTEXTUAL FUZZING IN CAIIPA
Caiipa targets the needs of two types of users:

• App Developers who use Caiipa to complement their
existing testing procedures by stress-testing code under
hard to predict combinations of contexts, e.g. another
country, or different phones.

• App Distributors who accept apps from developers
and offer them to consumers (such as, entities operating
marketplaces of apps) – distributors must decide if an
app is ready for public release and cope with reviewing
thousands of apps per week2.

Consequently, Caiipa has the following design requirements:

• First, and most importantly, it needs to be comprehen-
sive. Since testing all possible contexts, e.g. every pos-
sible lat-long location, would take a long time, Caiipa
needs to come up with cases that are representative of
the real-world, and where apps often fail or misbehave.

• Second, and usually in contradiction to the first require-
ment, it should be responsive and provide quick, timely
feedback to users. We strive to provide feedback in the
order of minutes, which is very challenging given the
number of contexts, and their combinations for which
the apps need to be tested. Consequently, Caiipa needs
to quickly determine the most relevant test cases to apply
to submitted apps.

• Third, it needs to be able to detect unexpected problems,
rather than perform spot tests for specific failures (e.g.,
common bugs that cause many failures but can easily
be found by targeted approaches). In order to find these
unforeseen issues, the conditions under which they might
occur need to be tested for.

• Fourth, it should be black box. We cannot always assume
access to app source code. Although instrumentation
of binaries has been shown to work for some Windows
Phone apps [28], even for a given platform there are many
types of apps (e.g., managed, HTML, native). Also, we
want methods that can generalize to Windows, Android,
and iOS devices.

2.1 The Mobile Context Test Space
We believe the following three mobile contexts, and the

variations therein, capture most context-related bugs in mo-
bile apps. To the best of our knowledge there are no existing
ways to systematically test these context variations.

Wireless Network Conditions. Variation in network
conditions leads to different latency, jitter, loss, throughput
and energy consumption, which in turn impacts the perfor-
mance of many network-facing apps (e.g., 84% of Android
apps in a large-scale survey request networking permissions
[37]). These variations could be caused by the operator,
signal strength, technology in use (e.g. Wi-Fi vs. LTE),
mobile handoffs, vertical handoffs from cellular to Wi-Fi,
and the country of operation. For example the RTTs to
the same end-host can vary by 200% based on the cellular

2
8,500 app are reviewed weekly by the Apple App Store [6].

operator [17], even given identical locations and hardware,
the bandwidth speeds between countries frequently can vary
between 1 Mbps and 50 Mbps [35], and the signal strength
variation changes the energy usage of the mobile device [22].

Device Heterogeneity. Variations in devices require
an app to perform across different chipset, memory, CPU,
screen size, resolution, and availability of resources (e.g. NFC,
powerful GPU, etc.). This device heterogeneity is severe.
3,997 different models of Android devices – with more than
250 screen resolution sizes – contributed data to OpenSignal
database during a recent six month period [26]. We note
that devices in the wild can experience low memory states
or patterns of low CPU availability different from developer
expectations, e.g. a camera briefly needs more memory, and
this can affect user experience on a low-end device.

Sensor Input. Sensors are commonly used by apps, for
instance, surveys of Android marketplaces indicate between
22% and 42% of apps localize through GPS or Wi-Fi [34,
37]. These apps need to work across availability of sensors,
their inputs, and variations in sensor readings themselves.
For example, a GPS or compass might not work at a loca-
tion, such as a shielded indoor building, thereby affecting
end user experience. Furthermore, depending on the loca-
tion or direction, the app response might be different. Apps
might sometimes cause these sensors to consume more en-
ergy, for example, by polling frequently for a GPS lock when
the reception is poor. The sensors also sometimes have jitter
in their readings, which an app needs to handle.

2.2 Caiipa Overview
Caiipa is implemented as a cloud service with the compo-

nents shown in Figure 1. App developers (or distributors)
submit binaries of their apps (i.e. an app packages). Caiipa
then runs the app under a controlled environment (AppHost)
either in an emulator or on real hardware, while simulating
various contexts (networks, carriers, locations, etc.) using
the Perturbation Layer. It continuously monitors the per-
formance of the app under each context; and PerfAnalyzer
outputs a report with all cases where it found the app to have
a bug, where a bug can be a crash, a performance anomaly
(e.g., CPU), or an unexpected energy drain.

However, as mentioned earlier, running all possible combi-
nations of contexts is not feasible. To address this challenge,
we propose two techniques. First, ContextLib uses machine
learning techniques to identify representative contexts by (i)
determining which combinations of contexts are likely to oc-
cur in the real world, and (ii) removing redundant combi-
nations of contexts. This is a preprocessing step, which we
run periodically on crowdsourced data as explained in § 4.
Second, ContextPrioritizer sorts different context combina-
tions, and runs those with higher likelihood of detecting fail-
ures before others. This helps Caiipa to quickly discover the
problematic scenarios. AppHost Dispatcher reads the prior-
itized test cases from ContextPrioritizer and sends each test
to the appropriate AppHost.

2.3 Caiipa System Components
As shown in Figure 1, Caiipa consists of five components:

(1) ContextLib, (2) ContextPrioritizer, (3) AppHost Dis-
patcher, (4) AppHost, and (5) PerfAnalyzer.

Figure 1: Caiipa system diagram.

ContextLib. ContextLib stores definitions of various mo-
bile context conditions (e.g. loss, delay, jitter at a location)
and scenarios (e.g. handoff from Wi-Fi to 3G). ContextLib
is populated using datasets collected from real devices (e.g.,
OpenSignal [25] and WER [7]) in addition to (1) challeng-
ing mobile contexts defined by domain experts; and, (2) a
small number of test cases designed to target key device cat-
egories (see AppHost Dispatcher for more). Because context
datasets are typically large-scale (OpenSignal, for instance,
contains millions of network observations) and because not
every raw context in a dataset will be an effective test condi-
tion, ContextLib performs a two-stage test case generation
process that first filters redundant contexts that do not sig-
nificantly impact app behavior (i.e., resource consumption);
before then generating test cases not from just individual
contexts (e.g., a network condition), but also based on con-
text transitions (e.g., 3G to 4G) and the co-occurrence con-
texts of different types (e.g., fast network with low memory).

ContextPrioritizer. ContextPrioritizer determines the
order in which the contexts from ContextLib should be per-
formed, and communicates this ordering to AppHost Dis-
patchers. Aggregate app behavior (i.e., crashes and resource
use) collected and processed by PerfAnalyzer from AppHosts,
is used by ContextPrioritizer to build and maintain app
similarity measurements that determine this prioritization.
Both prioritization and similarity computation are online
processes. As each new set of results is reported by an
AppHost, more information is gained about the app be-
ing tested, resulting potentially in re-prioritization based
on new behavior similarities between apps being discovered.
Through prioritization two outcomes occur: (1) redundant
or irrelevant contexts are ignored (e.g., an app is discovered
to never use the network, so network contexts are not used);
and, (2) contexts that negatively impact similar apps are
prioritized (e.g., an app that behaves similarly to streaming
apps would have network contexts prioritized).

AppHost Dispatcher. Apps run within a controlled en-
vironment called AppHost. AppHosts can be instantiated
either on a VM or on real hardware. The AppHost Dis-
patcher makes this decision based on the test case workload
generated by ContextPrioritizer. In order to scale testing,
most test cases are run on a VM, which AppHost Dispatcher
selects from a AppHost pool. However, AppHosts running
on real devices are used by Caiipa in two situations. First,
in the event the app is native or mixed code and unable

to be run on an emulator3, or when an app uses specific
hardware that is difficult to emulate, such as the camera
or NFC interface. Second, when ContextPrioritizer selects
any of the small number of device-related test cases included
in ContextLib (such as the case corresponding to a low-end
smartphone that causes testing to be done using a device
representative of that category).

AppHost. The AppHost has three main functions:
UI Automation (Monkeying). We use a User Interaction

Model (see §4) that generates user events (e.g., touch events,
key presses, data input) based on weights (i.e. probability
of invocation) assigned to specific UI items. Our technique
works on tablets and phones, and is able to execute most of
the scenarios for an app. As there is no dependency between
our model and other Caiipa components, it can be replaced
by a more elaborate one without negative impact. Moreover,
we also allow developers to customize its weights.

Simulating Contexts (Perturbation). This component
simulates conditions, such as different CPU performance lev-
els, amount of available memory, controlled sensor read-
ings (e.g., GPS reporting a programmatically defined loca-
tion), and different network parameters to simulate differ-
ent network interfaces (e.g., Wi-Fi, GPRS, WCDMA), net-
work quality levels, and network transitions (3G to Wi-Fi)
or handoffs between cell towers. Each one of these is imple-
mented using various kernel hooks or drivers (4). This layer
is extensible and new contexts can be added as required.

Monitoring. During test execution AppHost closely records
app behaviour in the form of a log of system-wide and per-
app performance counters (e.g., network traffic, disk I/Os,
CPU and memory usage) and crash data. To accommodate
the variable number of logging sources (e.g., system built-
in services and customized loggers), AppHost implements a
plug-in architecture where each source is wrapped in a mon-
itor. Monitors can either be time-driven (i.e., logging at
fixed intervals), or event-driven (i.e., logging as an event of
interest occurs, like specific UI events).

PerfAnalyzer. This component identifies crashes, and
possible bugs (e.g. battery drain, data usage spikes, long
latency) in the large pool of monitoring data generated by
AppHosts. To identify failures that do not result in a crash,
it uses anomaly detection that assumes norms, based on pre-
vious behavior of (1) the target app and (2) an app group
that are similar to the target app.

Crashes by themselves provide insufficient data to identify
their root cause. Interpretation of them is key to providing
actionable feedback to developers. PerfAnalyzer processes
crash data across crashes to provide more focused feedback
and helps narrow down the possible root cause. Also, if the
app developer provides debug symbols, it can find the source
code location where specific issues were triggered.

PerfAnalyzer augments the bug data with relevant con-
textual information to help identify the source of problems.
The generated report includes resource consumption changes
prior to crash, the set of perturbed conditions, and the click
trace of actions taken on the app (along with screenshots),
thus documenting its internal computation state and how
the app got there; which is missing in regular bug tracking
systems or if only limited data from the crash moment is
available. The generated aggregate report also allows de-

3
This limitation applies only to ARM binaries.

Figure 2: ContextPrioritizer dataflow.

velopers to find commonalities and trends between different
crash instances that might not be easily visible.

3. PRIORITIZING TEST CASES
ContextLib maintains a test case collection that runs into

the thousands. At this scale, the latency and computa-
tional overhead of performing the full test suite becomes
prohibitive to users. To address this challenge, ContextPri-
oritizer finds a unique per-app sequence of test cases that in-
creases the marginal probability of identifying crashes (and
performance issues) for each test case performed. The key
benefit is that exercising only a fraction of the entire Con-
textLib can still discover important context-related crashes
and performance bugs. We note that its use is optional, and
users can also manually specify the order of test cases.

Overview. Figure 2 presents the dataflow of ContextPri-
oritizer. Within the overall architecture of Caiipa, the role
of ContextPrioritizer is to determine the next batch of test
cases (chosen from ContextLib) to be applied to the user-
provided test app.

The underlying approach of ContextPrioritizer is to learn
from prior experience when prioritizing test cases for a fresh
unseen test app. ContextPrioritizer first searches past apps
to find a group that should perform similarly to the current
test app (referred to as a AppSimSet). And then, it examines
the test case history of each member of the AppSimSet, iden-
tifying potentially “problematic” test cases that may result
in faults. These problematic test cases are then prioritized
ahead of others in an effort to increase the efficiency by which
problems in the current app are discovered.

While we informally refer to app(s) in this description
(e.g., test app, or apps in a AppSimSet), more precisely this
term points to an app package that includes both (1) a mo-
bile app and (2) an instance of a User Interaction Model (see
§4). This pairing is necessary because the code path and re-
source usage of an app are highly sensitive to the user input.
Conceptually, an app package represents a particular usage
scenario within an app.

Algorithm 1 details precisely ContextPrioritizer operation.
In what follows we explain the key algorithmic phases.

App Similarity Set. In addition to the sheer number
of potential test cases, context fuzzing is complicated by the
fact that a given app will likely only be sensitive to a fraction
of all test cases in ContextLib. However, it is also non-trivial
to predict which test cases are important for any particu-
lar test app – without first actually trying the combination.
For example, an app that sporadically uses the network for
checking program updates may be fairly insensitive to many
network related test cases; wasting resources on testing this
part of the mobile context space. Reasonable heuristics for
optimizing the assignment of test apps to test cases – such
as, inspecting the API calls made by an app, and linking cer-

Algorithm 1: ContextPrioritizer

Input : Prioritization Request for Appi
Leni: Length of required TestSeqi

Output: TestSeqi for Appi

1 AppSimSet ←− {} /* compute AppSimSet */
2 For ∀Appj ∈ AppHist

3 ResSimSet ←− {}
4 For ∀Resk ∈ ResSet
5 If KS.ResTestIsTrue(Appi, Appj,Resk)
6 ResSimSet ←− Resk
7 EndIf
8 End
9 If |ResSimSet| / |ResSet| ≥ KSthres

10 AppSimSet ←− Appj

11 EndIf
12 End

13 ResCrash ←− {} /* compute ResCrash */
14 For ∀Appk ∈ AppSimSet

15 For ∀Crashl ∈ AppHist[Appk]
16 ResCatSet ←− ResCat(Crashl, CATthres)
17 For ∀Resj ∈ ResSet
18 If Resj ∈ ResCatSet
19 ResCrash[Resj] ←− Crashl
20 EndIf
21 End
22 End

23 End

24 TestSeqi ←− {} /* select Test Case Sequence */
25 While |TestSeqi| ≤ Leni
26 CrashVote ←− {} /* voting - Tier One */
27 For ∀ Resj ∈ ResCrash
28 Temp ←− TopN(ResCrash[Resj],RESthres)
29 CrashVote ←− Temp
30 ResCrash[Resj] − Temp
31 End
32 TestSeqi ←− TopN(CrashVote,1) /* Tier Two */
33 End

tain contexts (e.g., network-related test cases) to API calls
(e.g., network-related APIs) – would have been confused by
the prior example.

ContextPrioritizer counters this problem by identifying
correlated system resource usage metrics as a deeper means
to understand the relationship between two apps. The intu-
ition underpinning this approach is that two apps that have
correlated resource usage (such as memory, CPU, network)
are likely to have shared sensitivity to similar context-based
test cases. For example, in deciding which test cases to first
apply to the prior example app (with sporadic network us-
age), this approach would identify previous test apps that
also had sporadic network usage – recognized by similarities
in network resource consumption. Then, it prioritizes other
test cases over network-related ones, with the insight of the
potential network insensitivity.

The building block operation within ContextPrioritizer is
a pairwise similarity comparison between a new test app,
and a previously tested app (called KS.ResTestIsTrue() in
Algorithm 1). This is done for each system resource metric
while both apps were exposed to the same test case (i.e., con-
text). A standard statistical test is performed to understand
if the distribution of the time-series data for this particular
metric generated by each app is likely drawn from the same
underlying population (i.e., the distributions are statistically

the same). To do this, we apply the Kolmogorov-Smirnov
(K-S) test [4], with an α of 0.05. The outcome of this test is
binary, either the distributions are found to be the same or
not. We expect other statistical tests (i.e., a K-S alternative)
would produce comparable results.

ContextPrioritizer uses the above described pairwise com-
parison multiple times to construct a unique AppSimSet for
each new test app. During this process, ContextPrioritizer
considers a collection of j resource metrics – called ResSet

(listed in Table 2). For each resource metric, the pairwise
tests are performed between the current test app and all
prior test apps (i.e., AppHist.) In many cases, ContextPri-
oritizer is able to compare the same pair of apps and same
resource metrics more than once (for example, under dif-
ferent test cases). For the prior test app to be included
in AppSimSet, it must pass the statistical comparison test
a certain percentage of times (KSthres). We empirically set
KSthres = 65%, as it is not too loose to differentiate cases
such as image-centric and video-centric news apps, and not
too restrictive to result in similar clusters with virtually in-
terchangeable members.

Importantly, no comparison between the current and past
test apps can be performed until at least a few test cases
are performed. ContextPrioritizer uses a bootstrapping pro-
cedure to do this, whereby a small set of test cases are au-
tomatically executed before prioritization. We select these
test cases experimentally by identifying k test cases with a
high initial rate of causing crashes4. Bootstrapping is impor-
tant only briefly as test app data quickly accumulates once
Caiipa starts to run.

Test Case History Categorization. As many crashes
are caused by abnormal resource usage (e.g., excessive mem-
ory), they can be tied to resource metrics. The motivation
for categorization of test case history is two-fold. First, it
allows non-context related crashes (e.g., division by zero) to
be ignored during prioritization. Second, the frequency of
crashes fluctuates significantly between resource categories
(e.g., network-related crashes are much more common that
hardware-related ones). As a result, fair comparisons for
later Test Case Sequence selection are only possible intra-
category instead of inter-category.

The intuition supporting the use of abnormal resource us-
age to categorize test case history is that a fall or rise in the
resource metric consumption immediately prior to a crash
is a signal of a likely cause. As we find that most real-
world contexts have an immediate impact on app behavior,
we compare the resource consumption of the last three user
clicks to that of the rest. Typically, the crash is then tied to
the resource metrics with the largest gradient (either posi-
tive or negative). This procedure is called ResCat() in Algo-
rithm 1. Due to potential inaccuracies, during ContextPrior-
itizer execution the top CATthres most likely resource metrics
are tied to each crash (by default CATthres is set to 3).

Test Case Sequence Selection. ContextPrioritizer uses
a two-tiered voting process to arrive at a sequence of test
cases (TestSeqi) to be applied to the test app (Appi). The
tiered process ensures no single resource category dominates
test case selection.

4
We set k to 3 and find the best test cases. As test case creation is
data-driven, we manually name them: GPRS*, 802.11b*, and 4G*, for
their similarity to conditions for those network types.

Context
Dimension

Raw
Entries Description Source

Network 9,500+ Cellular in Locations Open Signal
Wi-Fi Hotspot
Cellular Operators

Platform 220/23 CPU Utilization Ranges Watson
(W8/WP8) Memory Ranges

Sensor 300 Locations FourSquare
Others 49 Transitions, Extreme Hand-picked

Cases

Table 1: Context Library.

At each tier the voting setup is the same. Each time a test
case results in a crash is treated as a vote, any crash that
is categorized as being non-context related is ignored. The
order of test cases is determined by the popularity in terms of
weighted crashes observed in past test apps contained within
AppSimSet – in Algorithm 1 this is computed by TopN().

The differences between the two tiers are in the pools of
context-related crashes considered. For each past test app,
the first tier looks at which test case crashes happened for
each resource metric (ResCrash). Then, the top RESthres
popular test cases is picked for each app, and aggregated at
the second tier. A single test case is chosen, but this process
is repeated for a test case sequence. We set RESthres to be
10 in our current Caiipa implementation.

4. CAIIPA IMPLEMENTATION
This section presents the implemented testing framework

components (see Figure 1). The entire Caiipa prototype con-
sists of ≈ 31k lines of code, broken into: ContextLib 1.9kloc;
ContextPrioritizer 2.2kloc; AppHost 20kloc; and PerfAna-
lyzer 6.8kloc.

ContextLib. Our current library contains 10,504 raw con-
texts, as summarized in Table 1. The majority of the Con-
textLib is populated by Open Signal [25] (a global public
dataset of crowd-sourced cellular measurements) as an exter-
nal data source. We limit the number of cities to 400, which
include 50 mobile carriers. Additional tests (e.g., memory
and CPU) can be sourced from telemetry databases. Fi-
nally, a number of hard-coded raw ContextLib records are
included for: (1) challenging scenarios that are not avail-
able from current context sources – examples include sudden
drops in available memory; in addition to (2) a small num-
ber of device-specific test cases (e.g., low-end smartphone,
ARM-architecture tablet) that correspond to actual devices
in our testbed.

Figure 3 illustrates the main components of ContextLib.
It pulls raw data from various databases and services (A),
such as those listed in Table 1, and populates the raw tables
(B). Redundant and duplicate contexts are then suppressed
for each context (C), to lead to a filtered set of context in-
stances (D). We then combine different contexts (network,
memory, CPU, etc.) (E) that generates the list of test cases
(F), which feeds to ContextPrioritizer. The two algorithmic
components – (C) Redundancy Filtering and (E) Test Case
Generation – shown Figure 3 operate as follows.

Redundancy Filtering. As a first step, we remove duplicate
entries from the raw contexts (rcs). However, this step by
itself is not sufficient. ContextLib also filters rcs if apps
do not demonstrate large changes in system resource usage
relative to other contexts. The underlying assumption is
that large changes in resources are an indicator that the app
is being exercised in significantly different ways by a con-

Figure 3: ContextLib dataflow, showing the components and
processes: (A) Context Sources; (B) Raw Context; (C) Redun-
dancy Filtering; (D) Filtered Context; (E) Test Case Generation;
and, (F) Test Cases.

text5. Resource-based filtering is performed separately for
each category of context (e.g., network, memory, CPU). The
goal is to arrive at fdomi for each category – a collection of
key context conditions (e.g., a problematic or common mem-
ory level) within the ith context type (e.g., memory-related
context) that often cause apps to behave (i.e., consume re-
sources) differently.

To find fdomi we begin by using training examples – that
is, pairs of rc and corresponding normalized resource usage.
Training examples are collected in two ways: (1) by peri-
odically testing a representative workload of popular mobile
apps; and (2) via the output of app testing from standard
Caiipa operation. We perform matrix decomposition on this
training data to learn a projection matrix dom.iprj for each
context category. This matrix maps contexts (e.g., a change
in device memory availability) to a n-dimension resource vec-
tor space of app usage parameterized by the same 19 system
metrics used by ContextPrioritizer (see Table 2).

Initially each fdomi contains all rcs (i.e., the 10,504 context-
only records available from context sources) projected using
dom.iprj and so represented as 19-dimension resource usage
vectors. Next, dimensionality reduction is performed on each
fdomi using Multi-dimensional Scaling [4] (MDS). This re-
moves irrelevant dimensions for a particular context category
(e.g., I/O-related system metrics might only be weakly rele-
vant within a networking-related context category). Finally,
to remove rcs with correlated system metrics (and thus re-
dundant) we apply a density-based clustering algorithm –
DBSCAN [4]6.

Test Case Generation. Filtered contexts are used to form
three types of test cases. First, test cases based solely on in-
dividual filtered contexts themselves. Second, contexts fused
together to form transition context test cases within the
same domain (e.g., a transition from one memory condition
to another). Third, multi-domain context test cases made
from the combination of contexts that test the co-occurrence
of multiple types of context conditions (e.g., simultaneously-
occurring specific network and CPU contexts).

Generation of test case types is as follows. First, all fil-
tered contexts are automatically used to generate test cases –
a trivial step. Next, candidate transition and multi-domain
test cases are generated. For each filtered domain (fdomi)
a companion transition domain is created. For example,
the network domain is paired with a network-transitions do-
main. Transition domains contain entries capturing all pos-

5
Under the expectation that the same UI steps are being repeated.

6
Although we use MDS and DBSCAN, many other dimensionality re-
duction and density-based clustering techniques are likely to perform
equally well.

sible transitions from one context to another, within that
domain (i.e., fdomi × fdomi). This step is needed because
context transitions (such as, switching from Wi-Fi to 3G net-
work connectivity) are common situations for mobile apps to
fail. A Cartesian product is then performed across all filtered
domains, including the new transition ones (fdom1 × · · ·
fdomn). This creates candidate test cases that span context
domains. However, a side-effect of this process is that new
redundant transition and multi-domain test cases can be in-
troduced. To remove these we perform one final round of re-
dundancy filtering over all test cases; the output of this filter-
ing is the final set of test cases. In the end, the number of test
cases (i.e., ContextLib size) is determined by clustering pa-
rameters that influence both phases of ContextLib. For DB-
SCAN and MDS these principally are dim and MinPts [4]
but equivalent parameters exist in alternative clustering al-
gorithms. In our implementation these values are empirically
set and default to {dim : 5,MinPts : 15}.
AppHost Dispatcher. AppHosts run either on VMs
or on real devices. VMs are used for the majority of tests
for testbed scalability and are maintained as a pool of Ap-
pHosts on Microsoft Azure. To support the testing of device-
sensitive context, we use four categories of devices in our
testbed – two smartphones (Lumia 520 and 1020) and two
tablets (Microsoft Surface RT, Samsung 700T1A Slate) –
each corresponding to specific device test cases in ContextLib.

AppHost Dispatcher allocates test cases picked by Con-
textPrioritizer for an app to either the VM pool or specific
hardware. Tests are assigned to a device if they require a
certain hardware architecture (e.g., requiring ARM to run),
or when the app uses certain components flagged as requir-
ing real-hardware. In such cases all tests picked for the app
are performed on a real device with the AppHost perturbing,
for example, the network or GPS, to examine different con-
texts. Alternatively, for apps that are otherwise able to be
run on an emulator, certain test cases may still be performed
on hardware, with the remainder being executed on emula-
tors. This occurs when ContextPrioritizer includes any of
the device-specific test cases (e.g., low-end smartphone) in
the collection of tests picked for the app.

The Dispatcher manages each AppHost node (both VM-
and device-based nodes) via an RPC-like framework.

AppHost. Each AppHost is controlled by the AppHost
Dispatcher. AppHosts support both Windows 8 (W8) and
Windows Phone 8 (WP8) apps. As shown in Figure 4, an
AppHost is comprised of four main components: 1) Con-
troller, 2) UI Automation Service, 3) Perturbation Service,
and 4) Data Manager.

The Controller is responsible for orchestrating the other
components inside the AppHost. A sub-module of the Con-
troller, called AppHost Daemon, encapsulates the OS-specific
coordination of UI automation, context emulation, and app
monitoring. When the app under test is a W8 app, the con-
troller and all other modules run on the target OS. This
allows W8 apps within AppHost to be exercised (with user
input), observed (via monitors and data manager), and for
the context to be carefully controlled (via perturbation).

To support WP8 apps, an inner host running the WP8
OS is used. WP8 apps run inside this inner host (a WP8
VM) and are exercised and monitored with phone-specific
modules. The W8 Controller and Data Manager still run
unchanged. But AppHost sub-modules (e.g., Daemon, the

Figure 4: Implementation components of AppHost.

native layer of the Perturbation service) run on the Win-
dows Phone OS. Some perturbation modules (Perturbation
Proxy) are reused without change, whereby the outer host
OS has its context manipulated which propagates into the
inner phone VM.

Monitoring Modules. DataManager instantiates the appro-
priate monitors to collect data depending on app type and
platform. Under W8, two monitors log system-wide and per-
app performance counters through WMI. A third monitor
collects crash data from the system event log and the local
WER system. Finally, a fourth monitor hooks to the Event
Tracing for Windows (ETW) service to capture the output
of msWriteProfilerMark JavaScript method in Internet Ex-
plorer; which allows writing debug data from HTML5/JS
Windows Store apps. Under WP8, monitors also log crash
data and system and app counters, but use OS-specific infra-
structure. Finally, under both platforms we enable an energy
consumption estimation monitor based on WattsOn [22].

Perturbation Modules. Network perturbation is implemented
on top of Network Emulator for Windows Toolkit (NEWT)7,
a kernel-space network driver. NEWT exposes four network
properties: download/upload bandwidth, latency, loss rate
(and model), and jitter. To which we introduced real-time
network property updates to emulate network transitions
and cell handoffs.

Modern VM managers expose settings for CPU resource
allocation on a per-instance basis. By manipulating these
processor settings, we can make use of three distinct CPU
availability states: 20%, 50%, and 100%. To control the
amount of available memory to apps, we use an internal tool
that allows AppHost to change available system memory.
Finally, we implemented a virtual GPS driver to feed apps
with spoofed coordinates and other GPS responses. Our
UDP-controlled virtual GPS driver raises a state-updated
event and a data-updated event to trigger the OS location
services to refresh the geolocation data.

As noted, the WP8 AppHost can re-use parts of the W8
perturbation layer (like CPU or network throttling), rather
than implementing its own.

User Interaction Model. As W8 Store apps and WP8 apps
are “page”-based, the app UI is represented as a tree, where
nodes represent the pages (or app states), and edges repre-
sent the invoke-able UI elements. We provide a stand alone
authoring tool allowing a user to assign a weight to each UI
element. Higher weights indicate a higher probability of a
particular UI element being invoked. However, by default
– if the authoring tool is not used – each UI element has

7
Part of the Microsoft Visual Studio package.

an equal weight. Due to platform differences in UI automa-
tion APIs (i.e., W8 vs. WP8) we implement two native UI
actuators, each using a OS-specific automation framework.

PerfAnalyzer. To report actionable feedback to develop-
ers, PerfAnalyzer focuses on two areas: (1) System resource
consumption that is higher than expected under certain con-
texts (e.g., energy bugs); and, (2) Crashes linked to meta-
data assisting in root cause analysis.

Performance Outliers. To determine if the target app be-
ing tested exhibits abnormal behavior, we first find the set of
similar apps over measurements from previous tests (see §3).
Then, we perform MeanDIST-based outlier detection [16],
and see whether the test app is in the outlier group. Our
current implementation assumes 5% of the population are
outliers, which can be adjusted by the user. Users can filter
and rank outliers within a table view based on: (1) the fre-
quency at which they occur; (2) the magnitude in difference
to the comparison norm; and (3) a particular metric type.

Crash Analysis. To collect and interpret crash data, Cai-
ipa connects to Microsoft WER (Windows Error Reporting),
a service on every Windows system to gather information
about crashes for reporting and debugging. WER aggre-
gates error reports likely originating from the same bug by
a process of labeling and classifying crash data (see [7] for
details). The resulting data is then correlated to changes in
resource consumption prior to the crash for reporting.

5. EVALUATION
This section is organized by the following major results:

(1) ContextLib is able to effectively balance the trade-off be-
tween increasing the rate of discovering app problems (e.g.,
crashes and freezes) while reducing the number of test cases
required; (2) ContextPrioritizer can find up to 47% more
crashes than the conventional baselines, with the same amount
of time and computing resources; (3) Caiipa increases the
number of crashes and performance outliers found over the
current practice by a factor of 11× and 8×, respectively;
and (4) we share lessons learned to help future mobile app
development.

5.1 Methodology
In the proceeding experiments, we use two datasets that

are tested using our Caiipa prototype hosted in Azure (see
§4), specifically: (1) 235 mobile Windows 8 Store apps that
target tablet devices (hereafter W8 apps); (2) 30 Windows
Phone 8 apps that target smartphones (hereafter WP8 apps).
All apps are free to download from the Microsoft Windows
Store and Windows Phone Store, respectively; selected from
the list of top-free non-game downloads.

To define our test case workload we first pick three repre-
sentative cities from different continents with a large number
of mobile device users: Seattle, London, and Beijing. Next,
we utilize ContextLib to generate a total of 350 test cases.
We use the standard context sources part of our current
ContextLib implementation listed in Table 1. In addition,
we add five hand-coded network profiles not present in the
OpenSignal database, namely: 802.11b, WCDMA, and 4G – as
familiar network scenarios developers can use as reference
points; and GPRS out of range and GPRS handoff, as sce-
narios involving cell tower changes. We limit the potential
memory configurations generated by ContextLib to just two
to focus more closely on the networking parameter space.

Resource
Type Description

Network {datagrams/segments} {recieved/sent} per sec
total TCP {connection/failure/active}

total TCP {established/reset}
Memory current amount of % {virtual/physical} memory used

max amount of % {virtual/physical} memory used
{current,max} amount of % {paged} memory used

CPU % {processor/user} time
Disk bytes {written/read} per sec

Table 2: System resources used in the Caiipa prototype.

Figure 5: CDF of unique crashes found when incrementally
adding test cases from ContextLib.

Finally, we include four device-specific test cases tied to real
hardware: two phones (Lumia 520 and 1020) and two tablets
(Microsoft Surface RT, Samsung 700T1A), selected as rep-
resentatives of device classes.

We configure Caiipa to test individual apps three times
under each test case, with an individual test session under
one test case being five minutes in duration. Table 2 lists the
19 system resource metrics and performance counters logged
during our experiments. Finally, we use the term crash to
represent both app freezes and unexpected app terminations.

5.2 Mobile Context Test Space Exploration
Our first experiments examines two key Caiipa compo-

nents, namely: ContextLib and ContextPrioritizer.
ContextLib. We begin by examining key questions re-
garding test cases in our ContextLib design: Is a large-scale
ContextLib really necessary, or are many of our tests in Con-
textLib redundant? And, how effective is ContextLib in cap-
turing the same detected crashes if exhaustively testing a
much larger volume of raw context conditions?

To highlight any potentially redundant test cases in Con-
textLib, we perform an experiment where we test each app
(both W8 and WP8) while withholding differing fractions
of the 350-tests in the library. If unnecessary test cases are
present in ContextLib we should see certain test cases being
responsible for a disproportionate amount of the crashes.

Figure 5 compares the fraction of unique crashes found
by Caiipa against the fraction of ContextLib made available
during testing. This figure suggests that each test case ob-
serves, in general, new additional unique crashes. This ob-
servation justifies that the entire ContextLib we use is neces-
sary for testing. In fact, Figure 5 has a reasonably constant
slope, which also implies that all test cases are equally im-
portant in testing for app crashes. We find there is no small
subset of tests in ContextLib that are significantly more re-
sponsible for detecting more crashes than others. Therefore,
it is not possible to find a significant fraction of the differ-
ent types of crashes we find with Caiipa by using only a few
common failure-causing contexts.

(a) (b)

Figure 6: Context Library filtering performance: a) 500 raw
contexts for 4 apps; b) 200 raw contexts for 50 apps.

Next, to further investigate the effectiveness of the Con-
textLib techniques, we perform the following two experi-
ments. In each experiment, a selection of apps is initially
tested under a set of raw contexts taken directly from our
context sources (detailed in §4). We then repeat the experi-
ment using a experiment-specific ContextLib of varying size
synthesized from the same set of raw contexts (not the full
ContextLib used by Caiipa). The objective is to observe how
many crashes identified with the full-set of raw contexts later
go undetected as the number of test cases in the ContextLib
is lowered. If ContextLib techniques are effective, it will be
able to maintain reasonably high crash detection rates even
when the number of test cases drops dramatically.

Figure 6(a) shows an experiment using four representative
W8 apps – one from four distinct app categories. By using
fewer apps we are able in this experiment to use a large
number of raw context, specifically: 500. Using Caiipa, we
test each app under each raw context and on average, each
app crashes 16 times. The figure reports the per-app average
crash number. It shows that by using ContextLib we are
able to find a relatively high fraction of the crashes with the
raw contexts even as the number of test cases is lowered.
For example, we find on average by using only 60 test cases
(only 12% of the original total of 500) we are able to find
50% of all crashes.

Figure 6(b) presents an experiment with the same method-
ology except for a much larger number of apps. We use 50 of
the W8 apps detailed in §5.3, but consequently must lower
the number of raw contexts used to only 200. In this figure
we report the total number of crashes in this app popula-
tion. When testing all the raw contexts we find a total of
312 crashes. Again we find ContextLib to be effective in dis-
covering most of these app crashes with significantly fewer
than the total raw contexts. As one example, Figure 6(b)
shows it is able to find around 60% of all of these crashes
using only ≈ 35 test cases.

ContextPrioritizer. The evaluation metric is the num-
ber of crashes found as (1) the time budget varies, and
(2) the amount of available computing resource varies. We
used three comparison baselines. First, Oracle has the com-
plete knowledge of the measurements for all apps (including
untested ones), and it represents the upper-bound. Random
is a common approach that randomly picks an untested case
to run at each step. Finally, Vote does not rely on finding
apps with similar behavior, and uses test cases that yield the
most crashes in all previously tested apps.

Figure 7: % more crashes that ContextPrioritizer finds given
a time budget. 41.1% and 77.6% more crashes than Random
and Vote, respectively, within 1-hour. Its gain over baselines falls
below 5% only after exploring 85.71% of the entire test space.

Figure 8: Feasible combinations of time and computing budget
to try to find at least 10 crashes in each of the 235 tablet apps.
Caiipa uses much less time and computing resources.

Time Budget. We start with the question: given sufficient
time to exercise the target app under x test cases, which
x cases would reveal the most app crashes. We note that
one test case runs for a fixed duration (e.g., five minutes).
Figure 7 shows the results with the Windows 8 dataset, and
we highlight two observations.

First, Caiipa reports a higher number of crashes than Ran-
dom and Vote. On average, it can find 30.90% and 28.88%
more crashes than Random and Vote, respectively. We note
the Caiipa exhibits the most gain when the time budget
is relatively limited, or selecting less than 60% of all test
cases. In fact, Caiipa can find up to 47.63% and 77.61%
more crashes than Vote and Random, respectively. These
results demonstrate the gain from our two testing princi-
ples: learning from app test history, and considering only
apps with similar behavior in resource consumption.

Second, as the time budget increases, testing tools can run
through more test cases. This implies that the probability of
picking the set of test cases that cause crashes also increases,
regardless of the technique used. Therefore, the gain from
using different techniques will eventually experience a dimin-
ishing return. For example, the dotted lines in Figure 7 show
that the gain from ContextPrioritizer falls below 5% when
there is enough time budget to explore at least 85.71% of
the test space. Assuming 85.71% of our context library of
350 test cases, running five minutes for each test case would
take a total of 24.99 hours to complete.

Resource Tradeoff. We note that, since app testing is highly
parallelizable, multiple apps can be exercised at the same
time on different machines. At the extreme with an infinite
amount of computing resources, all prioritization techniques
would perform equally well, and the entire dataset can finish
in one test-case time. Given this assumption is not practical
in the real world, we calculate the speed up that Caiipa offers
under various amount of available resources.

Figure 9: Performance outliers and unique crashes by type.

Figure 8 illustrates combinations of computing resources
and time required to find at least 10 crashes in each of the
235 Windows 8 Store apps. For apps that have less than
10 crashes, we run through all test cases. First, the figure
shows increasing the resource in one dimension can lower
the requirement on the other. Second, by estimating the
information gain of each pending test case, Caiipa can reach
the goal faster and with fewer machines. For example, to
find all crashes as set in our target within a time limit of
4425 minutes, Caiipa needs 294 machines – 33% less than the
nearest benchmark. Finally, in this dataset, the break-even
point for Random is at the time budget of 6,630 minutes, or
> 90% of the total possible time for testing all combinations
of apps and test cases.

5.3 Aggregate App Context Testing
In our next set of experiments, we investigate crashes and

performance outliers identified by Caiipa within a set of pop-
ular publicly available mobile apps.

Comparison Baseline. We compare Caiipa to a conven-
tional UI automation approach as a comparison baseline.
This baseline represents current common practice for test-
ing mobile apps. To implement a UI automation approach
we use the default UIM already part of Caiipa (see §4). How-
ever, during app testing under the UI automation approach
context is not perturbed.

To perform these experiments all steps are repeated twice.
Once using Caiipa and then repeated under UI automation.
Since the setup is identical for each run of the same app,
differences in crashes and performance outliers detected are
due to the inclusion of contextual fuzzing by Caiipa.

Summary of Findings. Overall, Caiipa is able to discover
significantly more crashes (11.4×) and performance outliers
(8.8×) than the baseline solution for W8 apps. And approx-
imately 5.5× more crashes and 9× more outliers for WP8
apps. Furthermore, with Caiipa, 107 out of the 235 W8
apps tested observe at least one crash – in aggregate, Cai-
ipa discovers 661 unique crash incidents (from a total of
9,103 crashes) and 4,589 performance outliers. Similarly, 17
of the 30 WP8 apps crash 197 times (26 unique crashes)
and register 635 performance anomalies. Crash uniqueness
is defined by error code and stack trace. This result is some-
what surprising, as these apps are in production and already
presumedly went through testing.

Findings by Categories. Figure 9 shows the number of
crashes and performance outliers categorized by app source
code type: HTML-based, managed code, and apps contain-
ing platform-specific code (native or mixed code apps). The
observation is that Caiipa is able to identify significantly
more potential app problems across categories. For exam-

Figure 10: App performance outliers, by resource usage.

ple, in all categories, this difference in the number of outliers
found is a factor of approximately 8×.

Figure 10 shows performance outliers broken down by re-
source type. The figure suggests that both disk activity (i.e.,
I/O) and CPU appear to have approximately the same num-
ber of performance outlier cases. Interestingly, most outliers
are network or energy related. From the top energy outliers,
we observe that the root cause of high energy consumption
correlates with the underlying network condition. Under
lossy network conditions, the cause is typically connection
resets. Under reasonably good network conditions, the cause
is typically the amount of incoming network traffic.

Time to Discovery. In an effort to understand how the
time taken for Caiipa to identify crash conditions compares
to the analysis of user submitted crash reports we looked
into the WER backend database (see 4). We analyzed the
internal WER reports for all the crashes Caiipa is able to
find during our experiments. Our preliminary analysis of
this data compares how long it took for these same crashes
to appear in WER database after the app was released.

Overall, for W8 apps, Caiipa takes, on average, only 11.8%
(std dev 0.588) of the time needed by WER (2.6% of the time
if considering 94.7% of the crash population). Similarly, for
WP8 apps this percentage is even lower at 1.3% (std dev
0.025). By closely looking at the data, we see that a few W8
apps quickly crashed in the wild, with crash reports being
submitted less than one hour after release, thus reducing the
time difference to our proactive approach. We speculate that
part of the much better performance in WP8 apps is related
to their lower complexity and current lower adoption rates
when compared to W8 apps.

5.4 Experiences and Case Studies
Finally, we highlight some identified problem scenarios

that mobile app developers might be unfamiliar with, thus
illustrating how Caiipa can help prevent ever more common
context-related bugs.

Location Bugs. Seemingly every mobile app today uses lo-
cation information. Unfortunately, this also introduces the
opportunity for developer errors – location bugs. We now
detail one representative location bug, concerning an app
released by a US-based magazine publisher. Test results
from Caiipa emulating location (i.e., GPS input and net-
work conditions) detected that while the app was robust in
US conditions, it was very brittle in other countries. For
example, we find the app is 50% more likely to crash under
China conditions then US ones.

Network Transitions. Mobile devices experience network
transitions frequently throughout the day. For example,

handoffs from Wi-Fi to 3G when users leave their home.
It is critical apps be robust to such transitions.

During tests, Caiipa uncovered a prototypical example
demonstrating these issues in a popular Twitter app. We
noticed frequent crashes under certain network conditions.
By performing a larger number of test iterations we find that
whenever a (simulated) user attempts to tweet during a net-
work handoff from a “fast” (e.g., Wi-Fi) to “slow” (e.g., 2G)
network, the app crashes nearly every time. Without the
source code, it is hard to know the root cause of the issue.
However, it is a clear example of the type of feedback that
is possible using Caiipa.

Exception Handlers. During our experiments, we notice
a group of music streaming apps which tend to crash with
higher frequency on slow and lossy networks. By performing
decompiled code analysis [32], we find that the less crash-
prone music apps apply a significantly more comprehen-
sive set of exception handlers around network-related system
calls. Although not surprising, this highlights how Caiipa is
a promising way to compare mobile apps at scale and develop
new best practices for the community.

Unintended Outcomes from Sensor Use. Caiipa high-
lighted an interesting energy bug in a location tracking app.
The app registers for location updates to be triggered when-
ever a minimum location displacement occurs. However, we
find the app set the threshold to be very tight (≈ 5m accu-
racy). During testing we perturb the reported accuracy of
the location estimate provided to the app (see §4). We find,
at typical location accuracy values (≈ 25m), the app requests
location estimates at a much higher frequency. As a re-
sult, the app consumes energy at much higher rates than ex-
pected. This unexpected outcome would be otherwise hard
to recognize during non-context based testing.

6. DISCUSSION
We discuss overarching issues related to Caiipa.

Caiipa Software Release. Currently available as a web
service in beta trial at Microsoft (Figure 11), the system is
already in use by app development teams responsible for 11
apps. The service also allows us to test more effective ways
of providing feedback to developers on the detected issues.
We are preparing for a wider release in the coming months
and targeting additional scenarios, such as developers who
must test for compatibility issues against multiple platforms.

Hardware vs Emulators. Currently Caiipa makes limited
use of the support for physical devices (i.e. to run platform-
specific code and as individual test cases). A better analysis
of the tradeoffs between emulation and real devices is on-
going as well as tracking of hardware-specific metrics (e.g.
GPU usage, device temperature) and usage of chipset fea-
tures (e.g. co- and multi-processor).

Context Emulation. While emulating mobile context can
be seen as a form of bug inducement, it presents a num-
ber of advantages over other such approaches. For exam-
ple, by exploring context Caiipa can detect unforeseen sit-
uations. Other intrusive approaches like fault injection lose
these benefits. They must rely on historical data on past
issues, which limits their scope to previously detected prob-
lems. Furthermore, this data needs to be processed either
manually (which does not scale) or automatically (which is

Figure 11: Caiipa beta web service.

error prone) to identify the root cause issues to be injected
in the target system. Special care needs to be paid to this
analysis as they can cause faults not possible during actual
usage, or detect bugs not representative of real workloads.

Context Emulation Limitations. Caiipa currently ex-
poses only coarse-grained hardware parameters (i.e., CPU
clock speed and available memory). Although it can ac-
commodate real devices in the test client pool to achieve
hardware coverage, Caiipa lacks support for low-level hard-
ware modelling, such as Wi-Fi energy states. We leave the
support for an expanded perturbation layer as future work.

Real-World Mobile Context Collection. While our sys-
tem utilizes real-world data to emulate mobile contexts, we
recognize that some datasets are difficult to collect. For ex-
ample, an extensive, easily generalized, database regarding
users app interaction is not yet available. Of special inter-
est for connected apps, carrier-specific characteristics (e.g.
blocking of ports or protocols, DNS solving, routing) can be
a source of problems. Collecting and representing this infor-
mation as part of context present many challenges. We will
explore additional context sources in future work.

Testing Limitations. Many apps suffer from issues that
are not directly related to crashes nor performance, such as
layout issues, language errors, or usability problems. While
Caiipa can detect app hangs or excessive battery drain is-
sues, it does not address the category of content-related vi-
sual problems. Games also present challenges for automated
testing, from precision of UI interactions (e.g. gestures) to
gameplay constraints (e.g. only pressing jump when ap-
proaching an enemy), and they are out of scope for Caiipa.

Applicability to Other Platforms. While our prototype
runs on Windows-based OSs, the core design also works on
other platforms (e.g., iOS). Recently, we completed a pre-
liminary Android prototype that is functionally equivalent
to the original Window-centric implementation detailed in
this paper. This prototype has yet to be evaluated, but we
expect similar findings for Android-based apps as we report
for Windows apps. Because of its design, such as our black-
box app assumption and replaceable UI automation, Caiipa
is much easier to port to alternative platforms.

7. RELATED WORK
We propose new methods for using context during mobile

app testing. Our results complement existing techniques,
including static analysis and fault injection.

Mobile App Testing. There are many commercial teleme-
try solutions for mobile devices [5, 33, 7]. Carat [24] focuses
on energy bugs by periodically uploading coarse-grained bat-
tery and system status. AppInsight [28] adds visibility into
the critical paths of asynchronous mobile apps. Unlike Cai-
ipa, these are post-release solutions.

Many proactive testing tools are also available. However,
most tools cover only a small subset of mobile contexts. For
example, specialized tools [13] and libraries [21] exist for UI
automation testing. Also, there is considerable work into
generating UI input for testing of a specific goal (e.g., code
coverage) [36, 14, 3, 1, 27]. Additional proactive testing
tools emulate a limited set of predefined network conditions.
This emulation is controlled either manually [13, 20] or via
scripts [19]. In contrast to Caiipa, these tools do not allow
fine-grained control over network parameters, nor accurate
emulation of contexts such as network handoffs.

VanarSena [29] is a related effort that employs a greybox
testing approach, leveraging instrumentation, to find bugs.
It focuses on increased monkey UI testing efficiency (using a
proposed hit testing approach along with instrumentation)
and conventional fault injection of common crash inducing
conditions (e.g., unhandled HTTP error codes). Unlike Cai-
ipa, [29] can not test app performance (such as energy bugs)
and is unable to test unmanaged code due to its dependence
on instrumentation. We envision combining Caiipa and Va-
narSena into a seamless testing service that leverages the
strengths of both systems [9].

State Space Exploration. The software testing commu-
nity has proposed techniques to efficiently explore program
state space, which mostly rely on hints extracted from source
code or app test history. Whitebox fuzzing is one technique
that requires source code. For example, SAGE [11] tests
for security bugs by generating test cases from code analy-
sis. [2] explores code paths within mobile apps and reduces
path explosion by merging redundant paths. Model check-
ing is another popular technique, where the idea is to build
models of the app based on specs or code [15].

Finally, [12] proposes a test prioritization scheme using
inter-app similarity between code statement execution pat-
terns. However, as Caiipa does not require source code it
is more broadly applicable. Directed testing (e.g. [8]), is a
type of technique using a feedback-loop but for the same
app. Caiipa uses similar methods, but across apps.

8. CONCLUSION
This paper presents Caiipa, a testing framework that ap-

plies the contextual fuzzing approach to test mobile apps over
an expanded mobile context space in a scalable way. Our re-
sults show Caiipa can find many more bugs and performance
issues than existing tools that consider none or a subset of
the mobile context. Additionally, by linking context param-
eters to the detected issues, Caiipa provides additional in-
formation for developers to understand the causes of bugs
and better prioritize their correction.

9. REFERENCES
[1] D. Amalfitano, et al. Using GUI Ripping for Automated

Testing of Android Applications. In ASE 2012.
[2] S. Anand, M. Naik, H. Yang, and M. Harrold. Automated

Concolic Testing of Smartphone Apps. In FSE 2012.
[3] T. Azim et al. Targeted and Depth-first Exploration for

Systematic Testing of Android Apps. In OOPSLA 2013.

[4] C. M. Bishop. Pattern Recognition and Machine Learning
(Information Science and Statistics). Springer, August 2006.

[5] Crashlytics. http://www.crashlytics.com.

[6] Fortune. http://fortune.com/2009/08/22/40-staffers-2-
reviews-8500-iphone-apps-per-week/.

[7] K. Glerum et al. Debugging in the (Very) Large: Ten Years
of Implementation and Experience. In SOSP 2009.

[8] P. Godefroid, N. Klarlund, and K. Sen. Dart: Directed
Automated Random Testing. In PLDI 2005.

[9] R. Chandra et al. Towards Scalable Automated Mobile App
Testing. Technical Report MSR-TR-2014-44, 2014.

[10] C. Liang et al. Contextual Fuzzing: Automated Mobile App
Testing Under Dynamic Device and Environment
Conditions. Technical Report MSR-TR-2013-100, 2013.

[11] P. Godefroid et al. Sage: Whitebox Fuzzing for Security
Testing. Communications of the ACM, 55(3):40–44, 2012.

[12] A. Gonzalez-Sanchez, et al. Prioritizing Tests for Fault
Localization through Ambiguity Group Reduction. In
Proceedings of the IEEE/ACM ASE 2011.

[13] Google. UI/Application Exerciser Monkey.
http://developer.android.com/tools/help/monkey.html.

[14] F. Gross, G. Fraser, and A. Zeller. Search-based System
Testing: High Coverage, No False Alarms. In ISSTA 2012.

[15] H. Guo, et al. Practical Software Model Checking Via
Dynamic Interface Reduction. In SOSP 2011.

[16] V. Hautamaki, I. Karkkainen, and P. Franti. Outlier
Detection Using k-nearest Neighbour Graph. In ICPR 2004.

[17] J. Huang, et al. Uncovering Cellular Network
Characteristics: Performance, Infrastructure, and Policies.
Technical Report MSU-CSE-00-2, 2013.

[18] Flurry. http://www.flurry.com/bid/91911/Electric-
Technology-Apps-and-The-New-Global-Village.

[19] B. Jiang, et al. Mobiletest: A Tool Supporting Automatic
Black Box Test for Software on Smart Mobile Devices. In
Proceedings of AST 2007.

[20] Simulation Dashboard for Windows Phone. http://msdn.
microsoft.com/library/windowsphone/develop/jj206953.

[21] UI Automation Verify. http://msdn.microsoft.com/en-
us/library/windows/desktop/hh920986.

[22] R. Mittal, et al. Empowering Developers to Estimate App
Energy Consumption. In Mobicom 2012.

[23] R. Natella et al. On Fault Representativeness of Software
Fault Injection. IEEE Trans. on Software Eng., 39(1), 2013.

[24] A. J. Oliner, et al. Carat: Collaborative Energy Diagnosis
for Mobile Devices. In SenSys 2013.

[25] Open Signal. http://opensignal.com.

[26] Open Signal. Signal Reports. http://opensignal.com/repo
rts/fragmentation.php.

[27] V. Rastogi et al. Appsplayground: Automatic Security
Analysis of Smartphone Applications. In CODASPY 2013.

[28] L. Ravindranath, et al. AppInsight: Mobile App
Performance Monitoring in the Wild. In OSDI 2012.

[29] L. Ravindranath, et. al. Automatic and Scalable Fault
Detection for Mobile Applications. In MobiSys 2014.

[30] Techcrunch. http://techcrunch.com/users-have-low-tole
rance-for-buggy-apps-only-16-will-try-a-failing-
app-more-than-twice.

[31] Crittercism. http://pages.crittercism.com/rs/critterci
sm/images/crittercism-mobile-benchmarks.pdf.

[32] Telerik. JustDecompile. http://www.telerik.com.

[33] TestFlight. http://testflightapp.com/.
[34] Bit9. https://www.bit9.com/download/reports/Pausing-

Google-Play-October2012.pdf.

[35] A. I. Wasserman. Software Engineering Issues for Mobile
Application Development. In FSE - FoSER workshop, 2010.

[36] L. Yan and H. Yin. DroidScope: Seamlessly Reconstructing
the OS and Dalvik Semantic Views for Dynamic Android
Malware Analysis. In USENIX Security Symposium, 2012.

[37] T. Boksasp, et al. Android Apps and Permissions: Security
and Privacy Risks. NTNU Trondheim TR, June 2012.

