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Abstract
App experience drives healthy mobile ecosystems.

However, mobile platforms present unique challenges to
developers seeking to provide such experiences: device
heterogeneity, wireless network diversity, and unpredictable
sensor inputs. We propose Context Virtualizer (ConVirt), a
cloud-based testing service that addresses two challenges.
First, it provides a large set of realistic mobile contextual
parameters to developers with emulators. Second, it enables
scalable mobile context exploration with app similarity
networks. To evaluate the system design, we profile 147
Windows Store mobile apps on our testbed. Results show
that we can uncover up to 11 times more crashes than
existing testing tools without mobile context. In addition,
our app similarity network increases the number of abnor-
mal performances found in a given time by up to 36%, as
compared to the current practices.

1 Introduction
Mobile devices, such as smartphones and tablets, are

rapidly becoming the primary computing platform of choice.
This popularity and usage is fueling a thriving global mo-
bile app eco-system. Hundreds of new apps are released
daily, e.g. about 300 new apps appear on Apple’s App Store
each day [10]. In turn, 750 million Android and iOS apps
are downloaded each week from 190 different countries [8].
However, success of this global market for mobile apps is
presenting new demanding app testing scenarios that devel-
opers are struggling to satisfy.

Each newly released app must cope with an enormous di-
versity in device- and environment-based operating contexts.
The app is expected to work across differently sized de-
vices, with different form factors and screen sizes, in differ-
ent countries, across a multitude of carriers and networking
technologies. Developers must test their application across
a full range of mobile operating contexts prior to an app re-
lease to ensure a high quality user experience (Section 2).
This challenge is made worse by low consumer tolerance for
buggy apps. In a recent study, only 16% of smartphone users
reported they continue to use an app if it crashes twice soon
after download [28]. As a result, downloaded app attrition is
very high – one quarter of all downloaded apps are used just
once and then eventually deleted [27]. Mobile users only
provide a small opportunity for an app to demonstrate its

worth, performance and crashes are not tolerated.
Today, developers only have a limited set of tools to test

their apps under different mobile context. Tools for collect-
ing and analyzing data logs from already deployed apps (e.g.,
[9, 5, 2]) require the app to be first released before prob-
lems can be corrected. Through limited-scale field tests (e.g.,
small beta releases and internal dogfooding) log analytics
can be applied prior to public release but these tests lack
broad coverage. Testers and their personal conditions are
likely not representative of a public (particularly global) app
release. One could use mobile platform simulators ([14, 20])
to test the app under a specific GPS location and network
type, such as Wi-Fi, but in addition to being limited in the
contexts they support, these simulators do not provide a way
to explore all possible combinations of mobile contexts.

To address this challenge of testing the app under different
contexts, we propose contextual fuzzing – a technique where
mobile apps are monitored while being exercised within a
host environment that can be programmatically perturbed to
emulate key forms of device and environment context. By
systematically perturbing the host environment an unmod-
ified version of the mobile app can be tested, highlighting
potential problems before the app is released to the public.
To demonstrate the power of contextual fuzzing, we design
and implement a first-of-its-kind cloud service Context Vir-
tualizer (ConVirt) – a prototype cloud service that can auto-
matically probe mobile apps in search of performance issues
and hard crash scenarios caused by certain mobile contexts.
Developers are able to test their apps by simply providing an
app binary to the Context Virtualizer service. A summary re-
port is generated by Context Virtualizer for the developer that
details the potential problems observed and which conditions
appear to act as a trigger. Context Virtualizer utilizes primar-
ily cloud-based emulators but also integrates actual real de-
vices to provide coverage of hardware-specific contexts that
are difficult to otherwise emulate.

Key challenge when implementing Context Virtualizer is
the scalability of such a service, across the range of scenar-
ios and number of apps. Individual tests of context can easily
run into the thousands when a comprehensive set of location
inputs, hardware variations, network carriers and common
memory and cpu availability levels. In our own prototype
a library of 1,254 contexts is available and sourced largely
from trace logs of conditions encountered by real mobile



users (see §5.2.) Not only must conditions be tested in isola-
tion, but how an app responds to a combination of conditions
must also be considered (e.g., a low memory scenario occur-
ring simultaneously during a network connection hand-off.)

We propose a new technique that avoids a brute force
computation across all contexts. It incrementally learns
which conditions (e.g., high-latency connections) are likely
to cause problematic app behavior for detected app char-
acteristics (e.g., streaming apps). Similarly, this approach
identifies conditions likely to be redundant for certain apps
(e.g., network related conditions for apps found to seldom
use network conditions). Through this intelligent prioriti-
zation of context perturbation unexpected app problems and
even crashes can be found much more quickly than is other-
wise possible.

In this work we make the following contributions.
1. We show the need for additional testing framework for

mobile apps, which extends beyond the traditionally
available code testing tools. (§ 2)

2. We present a new concept, of contextual fuzzing, for
systematically exploring a range of mobile contexts.
We also describe techniques to make this approach scal-
able using a learning algorithm that effectively priori-
tizes contexts for a given run. (§ 3).

3. We propose a new, one of its kind cloud service, that
consists of a hybrid testbed consisting of real devices
and emulators, along with an energy testing framework,
to which app developers can submit apps for contextual
testing. (§ 5).

We evaluate our system using a workload of a represen-
tative 147 mobile Windows Store apps. Our experiments (1)
validate the accuracy of all contexts simulated and measure-
ments performed within our prototype; and, (2) examine the
scalability through test time and resource efficiency relative
to a collection of representative benchmark algorithms. We
demonstrate the benefits to developers of contextual fuzzing
by automatically identifying a range of context-related hard
crashes and performance problems within our app workload.
We describe both aggregate statistics of problems identified
and in some cases supplement these with individual app
example case studies. Finally, we discuss a series of
generalizable observations that detail overlooked contexts
that result in these issues and how they might be addressed.

2 The Mobile Context Test Space
We now present three different mobile contexts, and the

variations therein, which we believe captures the majority
of context-related bugs in mobile apps. To the best of our
knowledge there doesn’t exist ways to principally test all the
variations of these contexts.

Wireless Network Conditions. Variation in network
conditions leads to different latency, jitter, loss, throughput
and energy consumption, which in turn impacts the perfor-
mance of many network-facing apps (43% in the Google
Play). These variations could be caused by the operator,
signal strength, technology in use (e.g. Wi-Fi vs. LTE),

mobile handoffs, vertical handoffs from cellular to Wi-Fi,
and the country of operation. For example the RTTs to the
same end-host can vary by 200% based the cellular operator
used [17], even given identical locations and hardware, the
bandwidth speeds between countries frequently can vary
between 1 Mbps and 50 Mbps [33], and the signal strength
variation changes the energy usage of the mobile device [22].

Device Heterogeneity. Variation in devices require an app
to perform across different chipsets, memory, cpu, screen
size, resolution, and the availability of resources (e.g. NFC,
powerful GPU, etc.). This device heterogeneity is very
severe. 3,997 different models of Android devices – with
more than 250 screen resolution sizes – contributed data to
OpenSignal database during a recent six month period [24].
We note that devices in the wild can experience low memory
states or patterns of low CPU availability different from
the expectation of developers, e.g. a camera temporarily
needs more memory, and this interaction can affect user
experience on a low-end device.

Sensor Input. Apps need to work across availability of
sensors, their inputs, and variations in sensor readings
themselves. For example, a GPS or compass might not work
at a location, such as a shielded indoor building, thereby
affecting end user experience. Furthermore, depending
on the location or direction, the apps response might be
different. Apps might sometimes cause these sensors to
consume more energy, for example, by polling frequently
for a GPS lock when the reception is poor. The sensors also
sometimes have jitter in their readings, which an app needs
to handle.

3 Context Virtualizer Design
In the following section we describe the design consider-

ations and the overall architecture of Context Virtualizer.

3.1 Design Challenges
The goal of Context Virtualizer (ConVirt) is to address the

mobile app testing needs of two specific types of end-users:
• App developers who use ConVirt to complement their

existing testing procedures by stress-testing code under
hard to predict combinations of contexts.

• App distributors who accept apps from developers and
offer them to consumers (such as, entities operating
marketplaces of apps) – distributors must decide if an
app is ready for public release.

Before we can build an automated app testing service able
to examine a comprehensive range of mobile contexts we
must solve two fundamental system challenges:

Challenge 1. High-fidelity Mobile Context Emulation.
Cloud-based emulation of realistic mobile contexts enables
more complete pre-release testing of apps. Developers can
then incorporate such testing into their development cycle.
Similarly, distributors can be more confident of the user
experience consumers will receive. A viable solution to the



emulation problem will have two characteristics. First, it
must be comprehensive and be capable of emulating various
key context dimensions (viz. network, sensor, hardware)
in addition to the key tests within each dimension (e.g.,
wireless handoffs under networking). Second, it must be
an accurate enough emulation of the real-world phenomena
such that app problematic behavior still manifest.

Challenge 2. Scalable Mobile Context Exploration. As
detailed in §2, the number of mobile contexts that may im-
pact a mobile app is vast – for example, consider just the
thousands of device types and hundreds of mobile carriers in
daily use today. Because of the complexity of the real-world
developers and distributors are unable to correctly identify
which conditions are especially hazardous, or even relevant,
to an app. Instead automated exploration is required. Ideally,
not only are contexts tested in isolation, but in combination,
resulting in a combinatorial explosion that makes brute-force
testing infeasible.

To solve these challenges we propose the following
solutions that are embedded within the architecture and
implementation of Context Virtualizer.

Contextual Fuzzing. To address Challenge 1, we propose
a hybrid cloud service architecture that blends conventional
servers and real mobile devices. Servers running virtual
machines images of mobile devices provide our solution
with scalability. A perturbation layer built into both server
VMs and mobile devices allows a set of context types to
be emulated (for example, networking conditions). Under
this design, certain tests cases that are logic-based or that
rely on context that be effectively emulated are executed
on server VMs. Similarly, test cases that require hardware
specific conditionsare performed directly on a mobile device.

App Similarity Network. Our solution to Challenge 2 re-
lies on constructing a similarity network between a popula-
tion of apps. Under this network, apps are represented as
network nodes that are connected by weighted edges. Edge
weights capture correlated behavior (e.g., common patterns
of resource usage under the same context). By projecting a
new previously unseen app into the network we can identify
app cliques that are likely to respond to mobile contexts in
similar ways. Using the network, mobile contexts previously
observed to cause problems in apps similar to the app under
test can be selected. Similarly, those contexts that turned
out to be redundant can be avoided. One strength of this
approach is that it allows information previously discovered
about apps to benefit subsequently tested apps. The more
apps to which the network is exposed, the better it is able to
select context test cases for new apps to be tested.

Not only do these solutions enable Context Virtualizer to
meet its design goals, but we believe these are generalizable
techniques able to be applied to other mobile system
challenges that we leave to be explored in future work (see
§7 for further discussion.)

Figure 1. Context Virtualizer Architecture

3.2 Architectural Overview
As shown in Figure 1, Context Virtualizer consists of

four principle components: (1) Context Library (CL); (2)
App Similarity Prioritization (ASP); (3) App Environment
Host (AEH); and, (4) App Performance Analyzer (APA).
We now describe in turn each component along with
component-specific design decisions.

Context Library. Stored in CL are definitions of various
mobile context scenarios and conditions. One example sce-
nario is a network handoff occurring from Wi-Fi to 3G. An
example of a stored condition are the network characteristics
for a specific combination of location and cellular provider.
Every context relates to only a single system dimension (e.g.,
network, cpu); this enables contexts to be composable – for
instance, a networking condition can be run in combination
with a test limiting memory. CL is populated using datasets
collected from real devices (e.g., OpenSignal [23]) in addi-
tion to challenging mobile contexts defined by domain ex-
perts.

Through our design of CL that packages together context
parameters we (1) reduce the overall test space to search
while also (2) restricting tests that are executed to particular
combinations of parameters that actually occur in the wild
(e.g., a cellular provider and a specific location.) If instead
an unstructured parameter search within each mobile context
dimension was performed it is unclear how valid parameter
combinations could be enforced while the search scalability
challenges would be even worse. Similarly, our decision to
integrate external data sources directly into CL enables it
to better reflect reality and to even adapt to changes in the
mobile market (e.g., new networking parameters.) Without
this integration CL would be limited to only the mobile



context that users anticipate.

App Similarity Prioritization. Tested apps are exposed
to mobile contexts selected from CL. ASP determines which
order these contexts are to be performed and then assigns
each test to one of a pool of AEHs. Aggregate app behavior
(i.e., crashes, and resource use), collected by AEHs, is used
by ASP to build and maintain an app similarity network that
determines this prioritization. Both prioritization and sim-
ilarity network computation is an online process. As each
new set of results is reported by an AEH more information
is gained about the app being tested, resulting potentially in
re-prioritization based on new behavior similarities between
apps being discovered. Through prioritization two outcomes
occur: (1) redundant or irrelevant contexts are ignored (e.g.,
an app is discovered to never use the network, so network
contexts are not used); and, (2) those contexts that negatively
impacted apps similar to the one being tested are performed
first (e.g., an app that behaves similarly to other streaming
apps has a series of network contexts prioritized).

Our design decision to automate testing with a system-
atic search of mobile context enables any inexperienced user
successfully use Context Virtualizer. An alternative design
would require users to specify a list of mobile contexts to
test their app against – however, the ability of the user to
determine such a list would largely determine the quality of
results.

Instead of adopting general purpose state space reduction
algorithms we instead develop a novel domain-specific
approach. Mobile apps have higher levels of similarity
between each other (compared to desktop apps) because
of factors including (1) strong SDK-based templates, and
(2) a high degree of functional repetition (e.g., networking
functions).

App Environment Host. An AEH provides an environ-
ment for a tested app to run while providing the required
context requested by the PSP. App logic and functionality are
exercised assuming a particular usage scenario and encoded
with a Weighted User Interaction Model (WUIM, see §5.1)
provided by users (i.e., distributors or developers) when test-
ing is initiated. In the absence of a user provided WUIM a
generic default model is adopted. Specific contexts are pro-
duced within the AEH using using perturbation modules (see
Figure 1, central component) that realistically simulate a spe-
cific context (e.g., GPS reporting a programmatically defined
location). However, certain contexts can not be adequately
simulated – such as, particular hardware – and in these cases
the app is tested on being performed on the same, or equiva-
lent, hardware. During testing AEH uses monitor modules to
closely record app behavior. Monitors primarily record app
resource usage (e.g., memory) but they also record app state,
such as an app crashes.

The design choice of a mixed architecture is motivated
by the competing goals of scalability and realism. An
alternative approach using only real hardware will struggle
to scale. Furthermore it is unnecessary as many tests that are
related, for instance, to app logic do not strictly require real
hardware. Similarly, an approach purely using VM emula-

tors will have limited realism. Certain context dimensions
can never be performed with such as design. In contrast,
our design is extensible to include improved context support
(e.g., additional sensors) within our proposed architecture.

App Performance Analyzer. Collectively, all AEHs pro-
duce a large pool of app behavior (i.e., statistics and recorded
crashes) collected under various contexts. APA is designed
to extract from these observations unusual app behavior that
warrants further investigation by developers or distributors.
It relies on anomaly detection that assumed norms based on
previous behavior of (1) the app being tested and (2) a group
of apps that are similar to the target. As shown in Fig. 1, APA
collates its findings into a report made available to Context
Virtualizer users.

Our design of APA demonstrates the larger potential for
our App Similarity Networks approach. In this component
we leverage the similarity network used for prioritization as
a means to identify accurate expectations of performance for
a tested app.

4 App Similarity Prioritization
In the following section, we describe (1) the similarity

network used to guide context test case prioritization, and
(2) the prioritization algorithm itself.

This discussion makes use of two terms. First, the term
“target app” refers to a representative app for which context
test cases are being prioritized. Second, the term “resource
measurement” is one of the hundreds of individual measure-
ments of system resources – related to networking, CPU,
memory, etc. (see §5.1) – made while Context Virtualizer
tests an app.

4.1 App Similarity Network
A weighted fully connected graph is used by ASP to

capture inter-app similarity. We now describe the network
and its construction.

Nodes in the network represent not only apps, but a pairing
of an app and a specific WUIM (Weighted User Interaction
Model). A WUIM describes a particular app usage scenario
in terms of a series of user interaction events. An example
scenario is where a user listens to music on a radio and
periodically changes radio station. Since app behavior (e.g.,
resource usage) can differ significantly from scenario to
scenario, apps must be paired with a specific WUIM when
modeled in the similarity network. Throughout this section,
while we refer to an “app” being represented in the network,
in all cases this more precisely refers to a app and WUIM
pair.

Edges in the network between two nodes are weighted
according to the similarity between two apps with respect to
a specific resource measurement (e.g., memory usage). We
calculate similarity by computing the correlation coefficient
(i.e., Pearson’s Correlation Coefficient [3]) between pairs of
identical resource measurements observed under identical
context tests for two apps. This estimates the strength of the



(a) TCP packets received (b) Number of disk reads

Figure 2. Similarity graphs depict the degree of correla-
tion in consuming two resources when exercising 147 app
under eight networking contexts.

linear dependence between the two sets of variables. While
the correlation coefficient reports a signed value depending
on if the relationship is negative or positive, we use the
absolute value for the edge weight.

Bootstrap Scenario. Initially, there is no existing resource
measurement regarding the target app, with which similarity
to other apps can be computed. From our experiments, we
find the most effective (i.e., leading to higher prioritization
performance) initial set of three context tests are three
wireless networking profiles (c.f. §5.2): GPRS, 802.11b,
and cable. As more and more resource measurements are
made for the target app, the similarity networks improve
(and largely stabilize).

Per-Measurement Networks. We utilize multiple simi-
larity networks, one for each type of resource measurement
(e.g., allocated memory and CPU utilization). Figure 2
presents similarity graphs for two different resource metrics,
TCP packets received and disk reads for a population of
147 Microsoft Windows Store apps (detailed in §6). Each
edge weight shown in both figures (equal to correlation
coefficient) is larger than 0.7. We note that the graph, even
with this restriction applied, is well connected and has high
average node degree. Furthermore, both graphs are clearly
different and support our decision to use per-measurement
networks instead of a single one.

4.2 App Similarity-based Prioritization
ASP prioritization is an iterative four-step process that

repeatedly occurs while the target app is tested by Context
Virtualizer. These steps are: (1) cluster, (2) predict, (3) rank,
followed by (4) update.

Cluster. At the start of each iteration, an app cluster
is selected for the target app within each app similarity
network (one for each resource measurement type). The app
cluster is based on network edge weights. Experimentally,
we find an edge weight with a threshold of 0.70 is effective
during this process. All nodes with an edge weight greater
or equal to this threshold are assigned to be a member of the
cluster.

Predict. A prediction for the target app is made for each
resource measurement within each pending (i.e., yet to be

performed) context test. Predictions are made using a sim-
ple linear model trained for each member of the app cluster.
These models predict the unseen resource measurement for
a particular context test based on (1) the value for this mea-
surement for the app cluster member, and (2) the relationship
between the target app’s measurements and the app cluster
members under all previously computed context tests.

For those tests when a member of the app cluster crashed
a prediction can not be made. Instead their prediction is
replaced with a crash flag. Crash flags indicate a similar app
to the target app crashed under the context test attempting to
be predicted. When this context test is ranked against other
tests, the number of crash flags boost its ranking.

Rank. Based on predicted resource estimates and crash
flags, a ranking is given for all context test cases yet to to
be executed for the target app. The priority of test cases is
determined on this ranking, which is computed as follows.
First, the variance is calculated for each resource mea-
surement within each test case (excluding those with crash
flags). Variance provides a notion of prediction agreement
between each estimate. The intuition behind this decision is
that tightly clustered (i.e., low variance) estimates indicate
higher uncertainty regarding the estimate. We want to rank
test cases high when they have large uncertainty across
their resource measurements. Second, the variance for each
resource measurement is compared with all other resource
measurements of the same type. A percentile is assigned
based on this comparison. The average percentile for each
resource measurement within every context test case is then
computed. Third, crash flags for all resource measurements
are counted within each test case. We apply a simple
scaling function to the number of crashes that balances
the importance of many crashes against a high percentile.
Finally, scaled crash flag count is added to the percentile to
compute a final rank.

Update. The final phase in prioritization is to revise the app
similarity network based on new resource measurement col-
lected about the target app. These measurements may have
altered the edge weights between the target app and the other
apps in the network.

The new rankings determined at this iteration are utilized
as soon as an AEH completes its previously assigned context
test. Once the head of context test ranking has been assigned
to an AEH then it is no longer considered when ranking
occurs at the next iteration.

5 Implementation
This section details our current implementation of the

framework components (see Figure 1).

5.1 App Environment Host
AEH can run in virtual machines (VM) for testbed scala-

bility, or on real Intel x86 mobile devices (e.g., Samsung 7
Slate [26]) for hardware fidelity. AEH runs Windows 8 OS
with our own monitoring and perturbation modules.



Monitoring Modules. AEH logs a set of system statistics
of some running apps, as specified by the process matching
rules in a configuration file. In its simplest form, a process
matching rule would be a process name (i.e., ‘iexplore.exe’).
If AEH detects a new process during the periodic polling of
running process list, it monitors the process if there is a rule
match.

We note the caveat that HTML5/JS-flavored Win-
dows Store Apps 1 run inside a host application called
WWAEHost.exe. Therefore, AEH takes the hint from the
working directory argument of the command line that starts
the WWAEHost.exe process.

To accommodate the variable number of logging sources
(e.g., system built-in services and customized loggers), AEH
implements a plug-in architecture where each source is
wrapped by a monitor. Monitors can either be time-driven
(i.e., logging at fixed intervals), or event-driven (i.e., logging
as an event of interest occurs). Logging can take place on
both system-wide or per-app fashion. The final log file is in
JSON format.

We have implemented several monitors. Two separate
monitors track system-wide and per-app performance
counters (e.g., network traffic, disk I/Os, CPU and memory
usage), respectively. Specifically, the per-app monitor
records kernel events to back-trace a resource usage to
the process. The third monitor hooks to the Event Trac-
ing for Windows (ETW) service to capture the output
of msWriteProfilerMark JavaScript method in Internet
Explorer. This method allows us to write debug data
from HTML5/JS Windows Store apps. Finally, we have a
per-app energy consumption estimation monitor based on
JouleMeter [22].

Perturbation Modules. We built the network perturbation
module ontop of the Network Emulator for Windows Toolkit
(NEWT), a kernel-space network driver. NEWT exposes
four main network properties: download/upload bandwidth,
latency, loss rate (and model), and jitter. We introduced
necessary enhancements such as the real-time network prop-
erty update to emulate network transitions and cellular tower
handoffs. Another crucial enhancement is the per-app filter-
ing mechanism for perturbation without impact on on other
running processes.

Next, we describe two separate approaches to adjust
the CPU clock speed. First, modern VM managers (e.g.
VMWare’s vSphere) expose settings for CPU resource al-
location on a per-instance basis. Second, most modern Intel
processors support EIST that allows setting different perfor-
mance states. By manipulating the processor settings, we
can make use of three distinct CPU states: 20%, 50%, and
100%.

To control the amount of available memory to apps,
we use a tool called Testlimit from Microsoft, which in-
cludes command-line options that allows AEH to change the
amount of system commit memory. AEH then uses this tool
to create three levels of available memory for the apps to ex-
ecute.

1formerly referred to as Metro apps

Finally, we implemented a virtual GPS driver to feed apps
with spoofed coordinates, as Windows 8 assigns the highest
priority to the GPS driver. AEH instructs the virtual driver
through the UDP socket to avoid the overhead associated
with polling. Upon receiving a valid UDP command, our
virtual GPS driver signs a state-updated event and a data-
updated event to trigger the Windows Location Service to
refresh the geolocation data.

These CPU and memory perturbations can be used not
only for changing a given test context, but also as a way to
emulate more limited hardware, if necessary.

Weighted User Interaction Model. User inputs (e.g., nav-
igation and data) can significantly impact the app behavior
and resource consumption. For example, a news app con-
taining videos will consume different resources depending
on how many (and which) videos are viewed.

Our goal is to exercise apps under common usage sce-
narios with little guidance from developers. We represent
app usage as a tree. Tree nodes represent the pages (or app
states), and tree edges represent the UI element being in-
voked. Then, invoking UI elements (e.g., clicking buttons)
essentially traverses the UI tree.

Each usage scenario is a tree with weighted edges based
on the likelihood of a user to select a particular UI element
on a page. We generate a usage tree for each scenario
with a stand alone authoring tool, which allows the user to
assign a weight to each UI element. Higher weights indicate
a higher probability of a particular UI element being invoked.

5.2 Context Library
Our complete Context Library includes 1,254 mobile con-

text tests, the bulk of these being network and location re-
lated. CL currently uses Open Signal [23] as an external data
source. This public dataset is comprised of user contribu-
tions of wireless networking measurements collected around
the world. It provides CL with data from more than 800 cel-
lular networks and one billion WiFi points readings.

From datasets as large as Open Signal each data point
could be extracted into one (or more) context tests. How-
ever, this would be intractable during testing but more impor-
tantly data is often redundant. Instead we extract aggregates
– bucketization – that summarize classes of data points. In
the case of Open Signal we aggregate data representing carri-
ers at specific cities. Aggregation is performed by computing
the centroid of all data points when grouped by carrier and
city. We limit cities to 400 selected based on the volume of
data collected at Open Signal. 50 carriers are also included.
Although we do not maintain the same amount of data for
each carrier.

Additional examples of CL tests are networking, memory
and cpu events. These are a variety of hand coded scenarios
replicating specific events typically challenging to apps. For
example, sudden drops in memory and fluctuations in cpu
availability. Device profiles are primarily combinations of
memory and CPU to represent classes of device with certain
levels of resources. Device profiles also include specific real
devices available within the ConVirt testbed.



5.3 Interfacing with App Environment Hosts
AEHs are controlled via PowerShell scripts, a Windows

shell environment. Each test script specifies the system
conditions to emulate and the system metrics to log. To
scale up the testbed to hundreds of machines, we set up
a client-server infrastructure where a central server (that
implements the ASP algorithm) configures each AEH
node via Windows Management Instrumentation (WMI)
technology, an RPC-like framework. The tight integration
between WMI and PowerShell simplifies the process of
pushing test scripts from the central server. In turn, a service
running on the AEH node accepts the script and initiates
its execution. Finally, after a test script is executed, the
output log is copied to a designated network share. Then,
the central server cleans up the data and writes to a MSSQL
database.

5.4 App Performance Analyzer
APA is responsible for (1) highlighting the system met-

ric measurements that are unexpected under certain mobile
contexts; and (2) providing actionable reports that help users
interpret the raw measurements.

To judge whether a system metric measurement is within
expectation, APA applies the common anomaly detection al-
gorithm: if the data is more than some standard deviations
away from the group mean, then it is flagged. APA defines
two notions of group. First, APA compares multiple itera-
tions of the same app being tested under the same context.
Second, APA compares an app with a comparison group of
apps, which can include a broad app population or simply a
set of apps considered to be similar in resource consumption.
APA reuses the same similarity equation described in §4.1.

APA copes with false positives by a ‘novelty’ weight,
which is proportional to the number of times the same com-
bination of emulated context and statistic is confirmed as
norm by developers of similar apps.

Finally, the reporting interface of APA can present data
analysis in several ways. Figure 3 shows a radar plot that
highlights the system metrics that developers should focus
on. These are the system metrics that have a high probability
of being outliers. In addition, identified outliers can be
ranked as to how severe they are. Ranking considers three
factors: (1) the frequency at which the outlier occurs; (2)
the difference to the comparison ’norm’; (3) the relative
importance of each metric. A variety of report templates that
provide actionable items for developers can be generated on
demand based on crash and outlier data.

6 Evaluation
This section is organized by the following major results:

(1) our system can emulate device and network conditions
with high fidelity; (2) bucketization can reduce the contin-
uous geolocation parameter space of a city to one single
point, at the expense of measurement error rate between 7%
and 30%; (3) GCF can find up to 36% more outliers than
the current industry practices, with the same amount of time
and computing resources; (4) contextual fuzzing increases
the number of crashes and performance outliers found over

Figure 3. Radar plot of statistics for an app under differ-
ent network conditions. The filled area represents the set
of similar apps.

Latency Bandwidth
(ms) Error (%) (MBps) Error (%)

ADSL 373.38 12.03 544.98 0.96
Cable 338.18 12.34 641.18 2.65
802.11g #1 118.60 14.05 5000.37 4.84
802.11g #2 119.90 1.42 4000.06 0.99
802.11b #1 459.40 14.89 260.04 2.56
802.11b #2 367.49 12.11 567.77 3.86
KPN 2G 508.02 0.27 25.48 4.87
KPN 3G 166.05 1.07 99.05 1.81
China Mobile 3G 674.87 9.25 71.93 0.72

Table 1. Emulated network performance numbers and
error for various network types.

the current practice by a factor of 11 and 8, respectively;
and (5) we share lessons learned to help developers improve
their apps.

6.1 Micro-benchmarks
This sub-section presents experiments to verify the

accuracy of our simulated network conditions and quantify
the system overhead when probing apps; to ensure that
measurements are not adversely affected by the system
components.

Network Emulation Validation. To assess network emula-
tion fidelity, we first configure NEWT parameters to match
bandwidth, latency, jitter and packet loss from network
traces collected under different real world settings. Then,
network performance is measured under NEWT.

Real world network traces were collected in Amsterdam
and Beijing, as listed in Table 1. Our benchmark client is a
laptop with a fast Ethernet connection, 802.11b/g radio, and
a USB-based cellular dongle. The backend server is a VM on
Amazon’s EC2. We measured the network bandwidth from
the laptop to the backend with iperf and latency by sending
100 ICMP pings.

The emulated testbed consists of two laptops connected
via a 100-Mbps switch. As our LAN outperforms all the



CPU (%)
App

CPU (%)
FW RAM (MB)

Spotify 0.37 107.14
Spotify (+FW) 0.51 1.04 105.46
Youtube 5.73 178.91
Youtube (+FW) 5.72 1.09 176.12
MetroTwit 0.52 150.73
MetroTwit (+FW) 0.52 0.83 160.03
Hydro Thunder Hurricane 40.71 170.20
HTH (+FW) 42.42 1.04 169.82

Table 2. App performance statistics with the framework
enabled and disabled.

emulated network types, it does not introduce any artifact
to the emulation results. One laptop acts as the server, and
the other repeats the same iperf and ping tests while cycling
through all nine networks.

Table 1 shows the emulated network bandwidth and
latency as observed. NEWT can throttle the bandwidth well,
with an error rate between 0.72% and 4.87%. On the other
hand, latency has an error rate of 18.05%. Fortunately, since
the error rate is relatively constant between iterations, we
can compensate by adjusting the latency setting accordingly.

System Overhead Analysis. To ensure that our measure-
ment techniques do not skew the results, we measured the
overhead introduced by our system. We selected four apps,
as listed in Table 2, for benchmark. This app selection
covers static web content access, streaming media (audio
and video), social networks, and CPU/GPU intensive game.
Each app ran two one-hour sessions; only one of which had
the framework enabled. Each session of the same app fol-
lowed the same user interaction model. In addition, for ses-
sions with the framework enabled, we instructed NEWT to
limit bandwidth to 1 Gbps. In this way, we ensure that
NEWT is actively monitoring TCP connections, without dis-
turbing the available bandwidth.

We used Perfmon, a standard Windows tool, to track
global and per-process performance counters. Table 2
shows that the framework has a very low resource overhead,
and the framework does not significantly impact the app
behavior. Specifically, the framework uses an average of 1%
CPU time, and the difference in memory usage is less than
2% in most cases.

6.2 Technique Validations
This section evaluates the scalability of our system in

terms of parameter space searching. We start by describing
the four datasets used for evaluation.

6.2.1 Evaluation Datasets
We collected four datasets from testing a total of 147 Win-

dows 8 Store apps. Individual test cases lasted five minutes,
and they were repeated on four machines: two desktops, one
laptop, and one slate. All apps followed a random user inter-
action model, and all datasets are categorized according to
their target scenarios.

Dataset #1 aims for 8 common network conditions
that mobile devices may encounter: WCDMA, 802.11b,
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Figure 4. Per-metric variation of WCDMA (T-Mobile)
emulation with traces from 12 locations in Seattle.

GPRS, GPRS (out of range), GPRS (handoff), ADSL, and
Cable internet. Dataset #2 tests how apps behave under
common network transitions: <802.11b, WCDMA>,
<802.11b, GPRS>, <GPRS, GPRS (out of range)>, and
<GPRS, GPRS (tower handoff)>. Dataset #3 emulates a
WCDMA network at 10 locations with large mobile device
populations: Beijing, Berlin, Jakarta, Moscow, New Delhi,
Seattle, Seoul, Teheran, Tokyo, Washington D.C. Dataset
#4 emulates a WCDMA network at 12 locations uniformly
spread out in Seattle.

6.2.2 Test Case Bucketization
Dataset #4 emulated real life WCDMA performance of

12 uniformly random locations in the Seattle area. The
OpenSignal data suggests that the variations in bandwidth
and loss rate are relatively low, as compared to latency. The
standard deviation for upstream and downstream bandwidth,
loss rate, and latency are 0.20, 0.48, 0.01, and 39.75, respec-
tively. We next quantify the impact of these variations on
bucketization.

Figure 4 shows the trade off of bucketization. Suppose we
pick one point to represent the 12 test points in Seattle, we
effectively reduce the number of profiles by a factor of 12.
However, doing so introduces error into measurements. Fig-
ure 4 shows the distance-to-mean ratio for each metric across
all apps. If we exclude the total disk reads (with the highest
variance), 85% of the metrics have an average distance-to-
mean ratio less than 30%. In other words, if we use a single
point to represent the WCDMA condition in Seattle, most
measurement errors are between 7% and 30%. However, the
speed up (by a factor of 12) might outweigh the error in this
case.

Figure 4 also shows that the network and disk metrics
observe a relative high variance, especially for the app
categories of sports and travel. This result suggests that the
granularity of the buckets should adapt to each app.
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(a) All outliers found
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(b) False positives
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Figure 5. The number of outliers found for all 147 app
packages in dataset #1.

6.2.3 App Similarity Prioritization
The evaluation uses two metrics: number and relevance

of outliers found as (1) the time budget varies, and (2) the
amount of available computing resource varies.

We picked three comparison baselines to represent the
absolute upper-bound and common approaches. First,
Oracle has the complete knowledge of the measurements
for all apps (including untested ones), and it represents the
upper-bound. Vote picks the most popular test case during
each step from all previously tested apps. In addition, as a
single ordering is not optimal for all apps, we coin the term
”vote-best” and ”vote-worst” for its upper and lower bound.
Finally, Random randomly picks an untested case to run at
each step.

Assessment of Outliers Found. We start by studying the
question: given sufficient time to exercise AppPkgtest under
x test cases, what should those x cases be to maximize the
number of reported problems. The assumption is that a sin-
gle test case runs for a fixed amount of time (e.g., five min-
utes). Figure 5 and Figure 6 illustrate the results from dataset
#1 and #2, respectively. Next, we use the former to highlight
three observations.

First, the total number of outliers reported by GCF is bet-
ter than the non- oracle baselines, and only the best cases
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Figure 6. The number of true outliers found for all 147
app packages in dataset #2.

of Vote can match this number. Second, we estimate the
false positives by assuming the complete dataset (of all eight
cases) as the ground truth. False positives are inevitable for
all approaches because only estimations are possible with-
out complete measurements. In addition, while GCF reports
slightly more false positives initially, this count drops faster
as the number of cases increases. Finally, considering both
results, Figure 5(c) suggests that GCF can report more true
outliers than the non-oracle baselines. Even with only eight
profiles, it can find up to 21%, 8%, and 36% more true out-
liers than Random, Vote-Best and Vote-Worst, respectively.
The difference between GCF and Oracle is due to the non-
zero error rate of the information gain prediction, as we
quantify next.

We quantify two sources of the prediction error by calcu-
lating the fit score relative to the oracle, or the percentage of
matching profiles in both sets. First, all apps start with a fixed
bootstrapping set, which has a fit score of 48%. We note that
this fit is better than the non-oracle approaches (e.g., 32%
for Vote). Second, GCF’s set selection accuracy for 4, 5,
6, 7, 8 test cases are 53.57%, 66.94%, 75.85%, 87.95% and
100%, respectively. The accuracy increases with the number
of measurements, only the bast case of Vote comes near this
result.

Finally, we note that the degree of gain from prioritiza-
tion is proportional to the degree of parameter variations
between test cases. For example, compared to dataset #1
(network profiles of different physical mediums), dataset
#2 (WCDMA cellular profiles from different countries)
has a less variation. In addition, Figure 6 suggests that
Context Virtualizer finds only up to 12%, 7%, and 11%
more true outliers than Random, Vote-Best and Vote-Worst,
respectively.

Resource Requirements. An important observation is that,
since app testing is highly parallelizable, multiple apps can
be exercised at the same time on different machines. On the
extreme of infinite amount of computing resources, all pri-
oritization techniques would perform equally well, and the
entire dataset can finish in one test-case time. Given this is
not practical in the real world, we measure the speed up that
GCF offers under various amounts of available computing
resources.

Figure 7 illustrates combinations of computing resources
and time required to find at least 10 potential problems in
each of the 147 apps in dataset #2. First, the figure shows
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Figure 7. Feasible combinations of time and computing
budget to find at least 10 potential problems in each of
the 147 apps in dataset #2.

increasing the resource in one dimension can lower the
requirement on the other. Second, by estimating the infor-
mation gain of each pending test case, Context Virtualizer
can reach the goal faster and with fewer machines. For
example, given 4425 minutes of time budget, ConVirt needs
294 machines – 33% less. Finally, the break-even point for
Random is at the time budget of 6630 minutes, or > 90% of
the total possible time for testing all combinations of apps
and test cases.

6.3 Aggregate App Context Testing Analysis
In this section, we (1) investigate crashes and perfor-

mance outliers identified via contextual fuzzing, and (2) ex-
amine the issues we have found from a set of publicly avail-
able apps that presumably had already been tested.

For these experiments, we exercised the same 147
Windows Store apps on test cases of dataset #1, as described
in §6.2. Individual apps were tested with four 5-min rounds
under both ConVirt and the context- free baseline solution
described below. Since the setup is identical for each run
of the same app, differences in crashes and performance
outliers detected are due to our inclusion of contextual
fuzzing.

Comparison Baseline. We use a conventional UI au-
tomation based approach as the comparison baseline. The
baseline represents current common practice of testing
mobile apps. We use the default WUIM that randomly
explores the user interface, which is functionally equivalent
to the Android Exerciser Monkey [13].

Summary of Findings. Overall, Context Virtualizer is
able to discover significantly more crashes (11×) and
performance outliers (11×) than the baseline solution.
Furthermore, with Context Virtualizer, 75 out of the 147
apps tested observed a total of 1,170 crash incidents and
4,589 performance outliers. This result is surprising, as
these production apps should have been thoroughly tested
by developers.

Findings by Categories. Figure 8 and Figure 9 show the
number of crashes and performance outliers categorized by
app source code type and targeted hardware architecture: (1)
HTML-based vs. compiled managed code, and (2) x64 vs.
architecture-neutral. The observation is that Context Virtual-
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Figure 8. App performance outliers categorized by app
source code type and targeted hardware architecture.
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Figure 9. Crashes categorized by app source code type
and targeted hardware architecture.

izer is able to identify significantly more potential app prob-
lems across both categories. For example, in both categories,
this difference in the number of outliers found is a factor of
approximately 8 times.

Table 3 categorizes apps in the same way as the Windows
Store. It shows that media-heavy apps (e.g., music, video,
entertainment, etc.) tend to exhibit problems in multiple
contexts. This observation motivates the use of contextual
fuzzing in mobile app testing. Furthermore, the use of media
often increases the memory usage, which results in crashes.

Figure 10 shows performance outliers broken down by
resource type. The figure suggests that most outliers are
network or energy related. While tools for testing different
networking scenarios are starting to emerge [20], the same
has not yet happened for energy-related testing (which also
heavily depends on the type of radios and communication
protocols in use). Both disk activity (i.e., I/O) and CPU
appear to have approximately the same number of perfor-
mance outlier cases.

6.4 Experience and Case Studies
In this section we highlight some identified problem

scenarios that mobile app developers might be unfamiliar
with, thus illustrating how a tool like Context Virtualizer can
be used to prevent ever more common issues.

Geolocation. As an increasing number of apps on mo-
bile platforms become location-aware, services start provid-
ing location-tailored content. For example, a weather app
can provide additional weather information for certain cities,
such as Seattle. Another example is content restrictions in
some streaming and social apps. Unfortunately, many devel-
opers are unaware of the implications of device geolocation
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Context
Virtualizer

Auto
UI

Context
Virtualizer

Auto
UI

(Outliers) (Instance of Crash)
News 1437 147 284 24
Entertainment 667 62 101 6
Photo 90 10 17 1
Sports 304 41 194 15
Video 688 123 142 12
Travel 238 12 25 1
Finance 193 13 0 0
Weather 31 2 1 0
Music 737 85 289 38
Reference 12 0 0 0
Education 125 13 0 0
E-reader 24 5 0 0
Social 20 1 112 5
Lifestyle 23 4 5 0

Table 3. App crashes and performance outliers catego-
rized the same as the Windows Store.

on app behavior and energy consumption. We use dataset #3
to illustrate these impacts.

Our first case study focuses on an app released by a US-
based magazine publisher. Test results from ten world-wide
locations show that the app crashed frequently outside of
North America; sometimes even not proceeding beyond the
loading screen. This problem was confirmed by users on the
app marketplace and verified by our manual testing and the
publisher later released an update (after our first round of
testing). Re-exercising the app with our tool suggests that
the likelihood of crashes in China was reduced from 80% to
50% with the new version, but the problem was not com-
pletely resolved.

A second case study on location exemplifies how resource
consumption variance can be significant with geolocation.
Figure 11 depicts a snapshot of dataset #3, where we see
that network-related metrics typically exhibit the largest
variance. We note that network-related metrics can impact
the system-related metrics such as CPU. The implications
are two fold. First, apps can present a higher energy
consumption in certain locations. For example, a particular
weather app uses 8% more energy in Seattle than Beijing.
Second, the excessive memory usage in some locations can
translate to crashes.

Network Transitions. In contrast to PCs, mobile devices are
rich in mobility and physical radio options. In fact, network
transitions can happen frequently throughout the day, e.g.,
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Figure 11. Per-metric variation of WCDMA emulation
with traces from top 10 worldwide locations with high
mobile device usage.

handoffs between cellular towers, switches from 3G to 2G,
and transition between Wi-Fi and cellular network. While
an increasing number of developers start to test apps under
discrete network profiles [20], testing for network transitions
is not yet a common practice.

An example case that demonstrates these issues is a
popular Twitter client app. Our system logs and user traces
suggested that the app crashed if users tried to tweet after a
transition to a slower network. Any attempt, by a user, to
post two separate messages, one over a Wi-Fi network and
a second one after switching to a slower GPRS network,
was enough to repeatedly cause a crash. Interestingly, if the
opposite network transition occurs, it does not seem to affect
the app execution. Without peeking into the source code,
it is difficult to point out the exact root cause of the issue.
However, all results from our logs (and posterior manual
exploration) suggest that the app does not consider network
dynamics and assumes the network is always available, after
an initial successful connection.

Exception Handlers. Results of dataset #1 also indicate
that some music streaming apps tend to crash with higher
frequency on slow and lossy networks. Decompiled code
analysis [29] reveals that the less crash-prone apps apply
a more comprehensive set of exception handlers around
network-related system calls. The effort in handling such
exceptional cases is extremely important in mobile plat-
forms as they can experience a much wider range of network
conditions than traditional PCs. Although, as previously
highlighted[7], the lack of a priori design of the exceptional
behavior can lead to multiple issues, it is not feasible to
expect that developers correctly create such code without
tools that support them in checking for the necessary
environment conditions.

Device Service Misuse. On this case ConVirt highlighted
a possible energy bug in a location tracking app. The
app registers for location updates (by setting a minimum



distance threshold for notifications) to avoid periodic polling
the platform. Events are then signaled if the location
service detects the device has moved beyond the threshold.
However, the app set the threshold to a value lower than the
typical accuracy of the location providers (e.g. 5m accuracy
at best on typical smartphone GPS[31]). This resulted in
the app constantly receiving location updates and keeping
the process up, which then consumed more energy than
expected.

7 Discussion
We now examine some of the overarching issues related

to Context Virtualizer design.

Generality of the System. While the paper focuses on
app testing, our core ideas can be generalized to other
scenarios. In privacy, applying app similarity networks
to packet inspections can discovery apps that transmit an
abnormal amount of personal data. In energy optimization,
measurement can help determine whether an app would
experience significant performance degradation on a slower
but more energy-efficient radio.

Real-World Mobile Context Collection. Our system
relies on real-world traces to emulate mobile context. We
recognize that some traces are more difficult to collect
than others. For example, while the data on cellular carrier
performance at various locations is publicly available [23],
an extensive database on how users interact with apps is not
easily accessible. We leave the problem of collecting user
interaction traces at large scale as a future work.

Hardware Emulation Limitation. ConVirt currently only
exposes coarse-grained hardware parameters: CPU clock
speed and available memory. While this suggests that certain
artifacts of the hardware architecture cannot be emulated,
our system can accommodate real devices in the test client
pool to achieve hardware coverage.

User Interaction Model Limitation. Our current im-
plementation interacts with apps by invoking their user
interface elements (e.g, buttons, links, etc.) through a UI
automation library. One limitation is that user gestures can
not be emulated, so many games cannot be properly tested.
Gesture is left as mid-term future work.

Applicability To Other Platforms. While our current
implementation works for Windows 8, the core system ideas
can also work on platforms that fulfill three requirements:
(1) the network stack should allow a method to manipulate
incoming and outgoing packets; (2) provide a way to
emulate inputs to apps, such as user touch, sensors and
GPS; and (3) good performance logging provided by the
OS. Additionally, the backend network should have higher
performance than the emulated network profiles. These
requirements are not onerous, and Android is another readily
suitable platform.

8 Related Work
Clearly, a wide variety of testing methodologies al-

ready exist for discovering software, system, and protocol
problems. Context Virtualizer contributes to this general
area by proposing to expand the testing space for mobile
devices to include a variety of real-world contextual factors.
In particular, we advance prior investigations of fuzz
testing [21, 11] with techniques that enable the systematic
search of this new context test space; this new approach
can then complement existing techniques including static
analysis and fault injection.

Mobile App Testing. In response to the strong need for im-
proved mobile app testing tools, academics and practitioners
have developed a variety of solutions. A popular approach is
log analytics, with a number of companies [9, 6, 4, 30] of-
fering such services. Although this data is often insightful,
it is only collectable post-release, thus exposing users to a
negative user experience.

Similarly, although AppInsight [25] enables significant
new visibility into app behaviour, it is also a post deploy-
ment solution that requires app binary instrumentation. Con-
text Virtualizer, in contrast, enables pre-release testing of un-
modified app binaries.

Emulators are also commonly used and include the abil-
ity to test coarse network conditions and sensor (GPS, ac-
celerometer) input. [14, 20], for instance, offer such controls
and allow a developer to test their app by selecting different
speeds for each network type. More advanced emulator us-
age, such as [18], enables developers to have scripts sent to
either real hardware or emulators and to select from a lim-
ited set of network conditions to apply during the test. Un-
like Context Virtualizer, neither emulator systems nor man-
ual testing offer the ability to control a wide range of context
dimensions – simultaneously, if required; neither do they
allow the high-fidelity emulation of contextual conditions,
such as handoff between networks (e.g. 3G to WiFi) that can
be problematic for apps. Finally, the conditions tested are
typically defined by the developers – instead, ConVirt gener-
ates the parameters for test cases automatically.

Testing methods based on UI automation, when applied
to mobile app testing adopt emulators to host applications.
Android offers specialized tools [14, 13] for custom UI
automation solutions. Also, significant effort has been
invested into generating UI input for testing (e.g., [34, 15])
with specific goals in mind (e.g., code coverage). ConVirt
allows users to define usage scenarios or falls back to
random exploration. However, any automation technique
can be added into our system.

Efficient State Space Exploration for Testing. A wide
variety of state exploration strategies have been developed to
solve key problems in domains such as distributed systems
verification [35] and model checking [16]. State exploration
is also a fundamental problem encountered in many testing
systems. Many existing solutions assume a level of internal
software access. For example, [1] explores code paths
within mobile apps and reduces path explosion by merging
redundant paths. Context Virtualizer test apps as a blackbox



and so such techniques do not apply. In [12], a prioritiza-
tion scheme is proposed that exploits inter-app similarity
between code statement execution patterns. However,
ConVirt computes similarity completely differently (based
on resource usage) – allowing use with blackbox apps.

Simulating Real-world Conditions. ConVirt relies on
high-fidelity context emulation along with real hardware.
Other domains, notably sensor networks have also de-
veloped testing frameworks (e.g., [19]) that incorporate
accurate network emulation. In particular, Avrora [32] offers
a cycle-accurate emulation of sensor nodes in addition to
network emulation. Conceptually ConVirt has similarity
with these frameworks, but in practice the context space
(low-power radio) and target devices (small-scale sensor
nodes) are completely different.

9 Conclusion
This paper presents Context Virtualizer (ConVirt) – an

automated service for testing mobile apps using an expanded
mobile context test space. By expanding the range of test
conditions we find ConVirt is able to discover more crashes
and performance outliers in mobile apps than existing tools,
such as emulator-based UI automation.
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