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Abstract
Scalable and comprehensive testing of mobile apps is ex-
tremely challenging. Every test input needs to be run with a
variety of contexts, such as: device heterogeneity, wireless net-
work speeds, locations, and unpredictable sensor inputs. The
range of values for each context, e.g. location, can be very
large. In this paper we present a one of a kind cloud service,
called ConVirt, to which app developers can submit their apps
for testing. It leverages two key techniques to make app testing
more tractable: (i) pruning the input space into representative
contexts, and (ii) prioritizing the context test space to quickly
discover failure scenarios for each app. We have implemented
ConVirt as a cluster of VMs that can each emulate various
combinations of contexts for tablet and phone apps. We evalu-
ate ConVirt by testing 230 commercially available mobile apps
based on a comprehensive library of real-world conditions. Our
results show that ConVirt leads to an 11.4x improvement in the
number of crashes discovered during testing compared to con-
ventional UI automation (i.e., monkey-testing.)

1 Introduction

The popularity of mobile devices, such as smartphones
and tablets, is fueling a thriving global mobile app
ecosystem. Hundreds of new apps are released daily, e.g.
about 300 new apps appear on Apple’s App Store each
day [9]. In turn, 750 million Android and iOS apps are
downloaded each week from 190 different countries [7].
Each newly released app must cope with an enormous di-
versity in device- and environment-based operating con-
texts. The app is expected to work across differently
sized devices, with different form factors and screen
sizes, in different countries, across a multitude of car-
riers and networking technologies. Developers must test
their application across a full range of mobile operating
contexts prior to an app release to ensure a high quality
user experience. This challenge is made worse by low
consumer tolerance for buggy apps. In a recent study,
only 16% of smartphone users continued to use an app
if it crashed twice soon after download [31]. As a result,

downloaded app attrition is very high – one quarter of all
downloaded apps are used just once [30]. Mobile users
only provide a brief opportunity for an app to show its
worth, poor performance and crashes are not tolerated.

Today, developers only have a limited set of tools to
test their apps under different mobile context. Tools for
collecting and analyzing data logs from already deployed
apps (e.g., [8, 5, 2]) require the app to be first released be-
fore problems can be corrected. Through limited-scale
field tests (e.g., small beta releases and internal dogfood-
ing) log analytics can be applied prior to public release
but these tests lack broad coverage. Testers and their
local conditions are likely not representative of a pub-
lic (particularly global) app release. One could use mo-
bile platform simulators ([15, 23]) to test the app under
a specific GPS location and network type, such as Wi-Fi,
but in addition to being limited in the contexts they sup-
port, these simulators do not provide a way to systemat-
ically explore representative combinations of operating
contexts under which their app might be used.

To address this challenge of testing the app under dif-
ferent contexts, we propose contextual fuzzing – a tech-
nique where mobile apps are monitored while being ex-
ercised within a host environment that can be program-
matically perturbed to emulate key forms of device and
environment context. By systematically perturbing the
host environment an unmodified version of the mobile
app can be tested, highlighting potential problems be-
fore the app is released to the public. To demonstrate the
power of contextual fuzzing, we design and implement a
first-of-its-kind cloud service ConVirt (for Context Virtu-
alizer) – a prototype cloud service that can automatically
probe mobile apps in search of performance issues and
hard crash scenarios caused by certain mobile contexts.
Developers are able to test their apps by simply providing
an app binary to the ConVirt service. A summary report
is generated by ConVirt for the developer that details the
problems observed, the conditions that trigger the bug,
and how it can be reproduced.
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A key challenge when implementing ConVirt is the
scalability of such a service, across the range of scenar-
ios and number of apps. Individual tests of context can
easily run into the thousands when a comprehensive set
of location inputs, hardware variations, network carriers
and common memory and CPU availability levels. In
our own prototype a library of 10,504 contexts is avail-
able and sourced largely from trace logs of conditions
encountered by real mobile users (see §5.) Not only must
conditions be tested in isolation, but how an app responds
to a combination of conditions must also be considered
(e.g., a low memory scenario occurring simultaneously
during a network connection hand-off.)

We propose a new technique that avoids brute force
computation across all contexts. It incrementally learns
which conditions (e.g., high-latency connections) are
likely to cause problematic app behavior for detected
app characteristics (e.g., streaming apps). Similarly,
this approach identifies conditions likely to be redun-
dant for certain apps (e.g., network related conditions for
apps found to seldom use network conditions). Through
this prioritization of context perturbation unexpected app
problems and even crashes can be found much more
quickly than is otherwise possible.
This paper, makes the following contributions:

• We present a new concept, of contextual fuzzing,
which expands conventional mobile app testing to in-
clude complex real-world operating scenarios. This
enables developers to identify context-related perfor-
mance issues and sources of app crashes prior to re-
leasing the app. (Section 2).

• We develop techniques for the scalable exploration of
the mobile context space. First, we propose a method
for synthesizing a representative, yet comprehensive,
library of context stress tests from large repositories
of available context sources. (Section 3). Second, we
propose a learning algorithm that leverages similar-
ities between apps to identify which conditions will
impact previously unseen apps by leveraging obser-
vations from previously tested apps (Section 4).

• We design a new cloud service, called ConVirt, to
which app developers and tests can submit their apps
to identify context-related problems. This service
consists of a pool of virtual machines that support
either smartphone or tablet apps, while realistically
emulating a variety of complex context combina-
tions. (Section 5).

We evaluate ConVirt using a workload of 200 Win-
dows 8 Store apps and 30 Windows Phone 8 apps based
on a comprehensive library of real-world contexts. Our
experiments show exploring the mobile context space
leads to an 11.4x improvement in the number of crashes
discovered during testing relative to UI automation based

testing. Moreover, we find crashes we discover from
automated pre-release testing take only around 10% of
the time compared to waiting for the same bug to ap-
pear within a commercially available crash reporting sys-
tem. Finally, ConVirt is able to identify 8.8x more per-
formance issues compared to standard monkeying.

2 The ConVirt Approach

ConVirt is targeted towards two groups of end-users:
App developers who use ConVirt to complement their
existing testing procedures by stress-testing code under
hard to predict combinations of contexts, e.g. another
country, or different phones. App distributors, or enter-
prises who accept apps from developers and offer them
to consumers, e.g. marketplaces of apps. The distribu-
tors must decide if an app is ready for public release.

For both classes of users, ConVirt has the following
requirements.

• First, and most importantly, it needs to be compre-
hensive. Since testing all possible contexts, e.g. ev-
ery possible lat-long location, will take a long time,
ConVirt needs to come up with cases that are repre-
sentative of the real-world, and where the app is most
likely to fail or misbehave.

• Second, and usually in contradiction to the first re-
quirement, it should be responsive and provide quick,
timely feedback to users. We strive to provide feed-
back in the order of minutes, which is very challeng-
ing given the number of contexts, and their combi-
nations for which the apps need to be tested. Conse-
quently, ConVirt needs to scale with increasing num-
ber of simultaneously submitted apps.

• Third, it should be black box. We cannot always as-
sume access to app source code. Although instru-
mentation of binaries has been shown to work for
Windows Phone apps [28], we want our techniques
to be general and work for Windows tablets, Android
and iOS devices as well.

2.1 The Mobile Context Test Space
We believe the following three mobile contexts, and the
variations therein, capture most context-related bugs in
mobile apps. To the best of our knowledge there does not
exist ways to principally test these context variations.

Wireless Network Conditions. Variation in network
conditions leads to different latency, jitter, loss, through-
put and energy consumption, which in turn impacts the
performance of many network-facing apps (43% in the
Google Play). These variations could be caused by the
operator, signal strength, technology in use (e.g. Wi-Fi
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vs. LTE), mobile handoffs, vertical handoffs from cel-
lular to Wi-Fi, and the country of operation. For exam-
ple the RTTs to the same end-host can vary by 200%
based on the cellular operator [19], even given identical
locations and hardware, the bandwidth speeds between
countries frequently can vary between 1 Mbps and 50
Mbps [35], and the signal strength variation changes the
energy usage of the mobile device [25].

Device Heterogeneity. Variation in devices require an
app to perform across different chipsets, memory, CPU,
screen size, resolution, and the availability of resources
(e.g. NFC, powerful GPU, etc.). This device heterogene-
ity is severe. 3,997 different models of Android devices –
with more than 250 screen resolution sizes – contributed
data to OpenSignal database during a recent six month
period [27]. We note that devices in the wild can expe-
rience low memory states or patterns of low CPU avail-
ability different from the expectation of developers, e.g.
a camera temporarily needs more memory, and this inter-
action can affect user experience on a lower-end device.

Sensor Input. Apps need to work across availability of
sensors, their inputs, and variations in sensor readings
themselves. For example, a GPS or compass might not
work at a location, such as a shielded indoor building,
thereby affecting end user experience. Furthermore, de-
pending on the location or direction, the apps response
might be different. Apps might sometimes cause these
sensors to consume more energy, for example, by polling
frequently for a GPS lock when the reception is poor.
The sensors also sometimes have jitter in their readings,
which an app needs to handle.

2.2 ConVirt Overview

ConVirt is implemented as a cloud service with the com-
ponents shown in Figure 1. Users (app developers or
distributors) submit binaries of their apps (packages for
Windows). ConVirt then runs the App under an emu-
lator environment (AppHost), which simulates various
contexts (networks, carriers, devices, locations, etc.) us-
ing the Perturbation Layer. It continuously monitors the
performance of the app under each context, and the Per-
fAnalyzer outputs a report with all cases where it found
the app to have a bug, where a bug could be a crash, a
performance anomaly or an unexpected energy drain.

However, as mentioned earlier, running all possible
combinations of contexts is not feasible. To address this
challenge, we propose two techniques. First, ContextLib
uses machine learning techniques to identify representa-
tive contents by (i) determining which combinations of
contexts are likely to occur in the real world, and (ii) re-
moving redundant combinations of contexts. This is a

Figure 1: ConVirt System Diagram

preprocessing step, which we run periodically on crowd-
sourced data as explained in Section 3. Second, Con-
textPrioritizer sorts different context combinations, and
runs those with higher likelihood of failure before oth-
ers. This helps ConVirt quickly discover the buggy sce-
narios. ContextPrioritizer sends one test case at a time,
in prioritized order, to an AppHost. Both ContextLib and
ContextPrioritizer are general techniques, which we be-
lieve have applications beyond ConVirt. (Section 7)

2.3 ConVirt System Components

As shown in Figure 1, ConVirt consists of four main
components: (1) ContextLib, (2) ContextPrioritizer, (3)
AppHost, and (4) PerfAnalyzer. A coordinator module
is responsible for managing multiple AppHosts.

ContextLib. ContextLib stores definitions of various
mobile context conditions (e.g. loss, delay, jitter at a lo-
cation) and scenarios (e.g. handoff from Wi-Fi to 3G).
Every context relates to only a single system dimension
(e.g., network, CPU); this enables contexts to be com-
posable – for instance, a networking condition can be run
in combination with a test limiting memory. ContextLib
is populated using datasets collected from real devices
(e.g., OpenSignal [26]) in addition to challenging mobile
contexts defined by domain experts. We describe this
component in more detail in Section 3.

ContextPrioritizer. ContextPrioritizer determines the
order in which the contexts from ContextLib should be
performed, and then assigns each test to one of a pool
of AppHosts. Aggregate app behavior (i.e., crashes and
resource use) collected and processed by PerfAnalyzer
from AppHosts, is used by ContextPrioritizer to build
and maintain app similarity measurements that deter-
mines this prioritization. Both prioritization and simi-
larity computation is an online process. As each new
set of results is reported by an AppHost more informa-
tion is gained about the app being tested, resulting poten-
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tially in re-prioritization based on new behavior similar-
ities between apps being discovered. Through prioritiza-
tion two outcomes occur: (1) redundant or irrelevant con-
texts are ignored (e.g., an app is discovered to never use
the network, so network contexts are not used); and, (2)
contexts that negatively impacted other similar apps are
prioritized (e.g., an app that behaves similarly to other
streaming apps has network contexts prioritized).

AppHost. Apps run within a VM called AppHost. This
helps isolate many apps that are simultaneously submit-
ted to ConVirt, and can help parallelize various tests.
The AppHost Coordinator picks a VM from the pool of
AppHosts to perform the workload generated by Con-
textPrioritizer. The AppHost has three primary func-
tions:

UI Automation (Monkeying): We use a User Interaction
Model (see §5) that generates user events (e.g., touch
events, key presses, data input) based on weights (i.e.
probability of invocation) assigned to specific UI items.
Our technique works on tablets and phones, and is able to
execute most of the scenarios for an app. We also allow
developers to customize this execution and personalize
the test cases.

Simulating Contexts (Perturbation): This component
simulates conditions, such as different CPU performance
levels, amount of available memory, controlled sensor
readings (e.g., GPS reporting a programmatically de-
fined location), and different network parameters to sim-
ulate different network interfaces (e.g., Wi-Fi, GPRS,
WCDMA), network quality levels, and network transi-
tions (3G to Wi-Fi) or handoffs between cell towers.
Each one of these is implemented using different various
kernel hooks or drivers (5). This layer is extensible and
new context dimensions can be added for other sensors
or resource constraints.

Monitoring: During test execution AppHost uses differ-
ent modules to closely record app behaviour in the form
of a log of system-wide and per-app performance coun-
ters (e.g., network traffic, disk I/Os, CPU and memory
usage) and crash data. To accommodate the variable
number of logging sources (e.g., system built-in services
and customized loggers), AppHost implements a plug-in
architecture where each source is wrapped in a monitor.
Monitors can either be time-driven (i.e., logging at fixed
intervals), or event-driven (i.e., logging as an event of in-
terest occurs, like specific rendering events).

PerfAnalyzer. This component identifies crashes, and
possible bugs (e.g. battery drain, data usage spikes, long
latency) in the large pool of monitoring data generated
by AppHosts. To identify failures that do not result in
a crash, it uses anomaly detection that assumes norms,

Figure 2: ContextLib Dataflow, showing the components and
processes: (A) Context Sources; (B) Raw Context; (C) Redun-
dancy Filtering; (D) Filtered Context; (E) Test Case Genera-
tion; and, (F) Test Cases

based on previous behavior of (1) the app being tested
and (2) a group of apps that are similar to the target app.

Crashes by themselves provide insufficient data to
identify their root cause. Interpretation of them is key
to providing actionable feedback to developers. Perf-
Analyzer processes crash data across crashes to provide
more focused feedback and helps narrow down the possi-
ble root cause. Also, if the app developer provides debug
symbols, PerfAnalyzer can find the source code location
where specific issues were triggered.

These bugs (crashes, performance, or energy anoma-
lies) can be roughly categorized into three groups: im-
plementation mistake, resource exhaustion, and unantic-
ipated circumstances. While implementation mistakes
are easier to reason about and debug, the other two cate-
gories are still hard to track with just crash episodes data.

PerfAnalyzer augments the bug data with relevant
contextual information to help identify the source of
problems. The generated report includes resource con-
sumption changes prior to crash, the set of perturbed con-
ditions, and the click trace of actions taken on the app
(along with screenshots), thus documenting its internal
computation state and how the app got there; which is
missing in regular bug tracking systems or if only lim-
ited data on the crash moment is available. The generated
aggregate report also allows developers to find common-
alities and trends between different crash instances that
might not be visible in coarser tests.

3 ContextLib: Generating Test Contexts

ContextLib automatically generates a library of real-
istic test cases from raw sources of context, such as
OpenSignal. We note that ConVirt allows users to add
specific additional test cases. The output of ContextLib
seeds the list of contexts for which the app will be tested.

Figure 2 illustrates the main components of Con-
textLib. It pulls raw data from various online databases
and services (A), such as those listed in Table 1, and pop-
ulates the Raw tables (B). Redundant and duplicate con-
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texts are then suppressed for each context (C), to lead to
a filtered set of context instances (D). We then combine
different contexts (network, memory, CPU, etc.) (E) that
generates the list of test cases (F), which feeds to Con-
textPrioritizer. This process is repeated periodically, or
as new data becomes available. We explain the two al-
gorithmic components, (C) and (E), next in this section.

Redundancy Filtering. As a first step, we remove du-
plicate entries from the raw contexts (rcs). However, this
step by itself is not sufficient. There are still several rcs
that are not identical, such as two different networking
scenarios, yet they may not cause a meaningful change
in app behavior.

Simply clustering raw context parameters (such as,
available memory or network latency) is not effective be-
cause fundamentally these values do not have linear cor-
respondence to app behavior. For some combination of
context parameters a small change will result in vastly
different app behavior; while (as mentioned) other con-
text parameters that are very different may cause nearly
identical operation.

Instead, we use a different approach. ContextLib fil-
ters raw contexts if an app does not demonstrate a sig-
nificant change in its system resource usage compared to
other contexts. The underlying assumption is that signif-
icant changes in resources are an indicator that the app is
being exercised in significant different ways by context1.

Resource-based filtering is performed on a per context
dimension basis; at each iteration the objective is to ar-
rive at fdomi – a set of key context parameters within the
ith context dimension that typically cause apps to behave
(i.e., consume resources) differently. We begin this pro-
cess by learning a dimension-specific matrix (dom.ipr j)
that can project each rc into a resource usage vector
space. This resource usage space is parameterized by
j resource usage metrics (see Table 2 for the 19 metrics
used the ConVirt prototype;) each dimension is a time
normalized statistic for the metric (e.g., average CPU uti-
lization across one minute intervals.) We find dom.ipr j
for dimension i by using matrix decomposition across a
collection of training examples – that is, observations of
pairs of rc and corresponding normalized resource usage
for the default app workload collection. By performing
matrix decomposition and learning dom.ipr j we are able
to project any arbitrary point between the two spaces;
this enables us to project rcs provided by context sources
for which we do not yet have resource usage statistics,
allowing them to still be included in the filtering process.

Training examples are collected in two ways (1) peri-
odically testing a representative app workload based on
popular mobile apps across multiple categories and (2)

1Under the expectation the same User Interaction Model is applied

the output of app testing from standard ConVirt opera-
tion (see §6 for additional details.)

After all rcs are projected using dom.ipr j the resource
vector space undergoes a dimensionality reduction step.
This is done to remove the influence of irrelevant dimen-
sion for the particular context type being operated within.
For example, disk related system metrics, that are part of
the default j dimensions, might only be weakly relevant
within a networking-related context dimension. This step
is performed with Multi-dimensional Scaling [3] (MDS).
Finally, to remove those rcs that have correlated sys-
tem usage metrics (and thus are redundant) we apply a
density-based clustering algorithm – DBSCAN [3]. 2

Test Case Generation. To allow test cases to be a
composite of different domains (e.g., network and mem-
ory), the follow steps are performed to generate candi-
date test cases (cts.) This is necessary because single-
domain fragments of context are readily available – but
sources of complete multi-domain context are not.

First, additional transition context domains are gen-
erated. Specifically, for each filtered domain (fdomi) a
companion transition domain is created. For example,
the network domain is paired with a network-transitions
domain. Transition domains contain the entries captur-
ing all possible by transitions from one filtered context to
another, within that domain (i.e., fdomi × fdomi.) This
step is necessary because context state changes (such as,
switching from Wi-Fi to 3G network connectivity) are
common situations for mobile apps to fail. Later, apps
that are perturbed with a test case containing a transition
are initially exposed to the first state (such as, a moderate
amount of memory) before then exposed to the second
state (such as, a lower level of memory.)

Next, a Cartesian product is performed across all fil-
tered domains, including the new context transition do-
mains (fdom1 × fdom2 × ·· · fdomn.) The side-effect of
this process is that new redundant cts can be introduced.
To remove these we again perform one final round of re-
dundancy filtering. Just as before, each ct is projected
into a resource usage space based on projection matrix
(multi.dompr j), trained exactly as previously described.
MDS and DBSCAN are also applied again before filtered
clusters are projected back into context parameters.

The final number of test cases generated are largely
determined by clustering parameters3 that influence both
filtering phases of ContextLib. Later in §6.2.1, we eval-
uate this trade-off between the coverage of raw con-
text and system overhead as the number of test cases
is changed – primarily this is a decision by the user,

2Although we use MDS and DBSCAN many other dimensionality
reduction and density-based clustering techniques are likely to perform
equally well.

3In the case of DBSCAN these are ε and MinPts [3] but equivalent
parameters are present in alternative clustering algorithms
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depending on how they value testing fidelity relative to
costs like latency in testing or computation used.

4 Prioritizing Test Cases

ContextLib maintains a test case collection that runs into
thousands. At this scale, the latency and computational
overhead of performing the full suite test cases becomes
prohibitive to users. Instead, ConVirt must remain ef-
fective with a much smaller number of test cases. To
meet this need, ContextPrioritizer is designed to find a
unique per-app sequence of test cases that increases the
marginal probability of identifying crashes (and perfor-
mance issues) for each test case performed. The key ben-
efit is that users are able to discover important context-
related crashes and performance bugs while performing
only a fraction of the entire ContextLib. However, just as
in the case of ContextLib, its use is optional; we provide
users a way to specify specific order of test cases.

Overview. Figure 3 presents the dataflow of ContextPri-
oritizer; it includes the following components and stages:
(A) Test App; (B) AppSimSet; (C) Test Case History
Categorization; (D) Test Case Sequence Selection; and,
(E) Test Case Order. Within the overall architecture of
ConVirt, the role of ContextPrioritizer is to determine the
next batch of test cases to be applied to the user provided
test app (chosen from ContextLib.)

The underlying approach of ContextPrioritizer is to
learn from prior experience when prioritizing test cases
for a fresh unseen test app. ContextPrioritizer first
searches past apps to find a group that is similar to the
current test app (referred to as a SimSet.) And then
examines the test case history of each member of the
SimSet, identifying any “problematic” test cases that re-
sulted in the crashing of the test app. These problem-
atic test cases are then prioritized ahead of others, for the
current test app, in an effort to increase the efficiency by
which test app problems are discovered.

While we informally refer to app(s) in this description
(e.g., test app, or apps in a SimSet), more precisely this
term corresponds to an app package that includes both
(1) a mobile app and (2) an instance of a User Interac-
tion Model (see §5.3). This pairing is necessary because
the code path and resource usage of an app is highly sen-
sitive to the user input. Conceptually, an app package
represents a particular user scenario within an app.

App Similarity Set. In addition to the sheer number of
potential test cases, context fuzzing is complicated by the
fact a test app will likely be only sensitive to a fraction
of all test cases in ContextLib. However, it is also non-
trivial to predict which test cases are important for any
particular test app – without first actually trying the com-
bination. For example, an app that uses the network only

Figure 3: ContextPrioritizer Dataflow

sporadically may turn out to be fairly insensitive to many
network related test cases; wasting resources spent on
testing this part of the mobile context space. Reasonable
heuristics for optimizing the assignment of test apps to
test cases – such as, inspecting the API calls made by an
app, and linking certain contexts (e.g., network-related
test cases) to API calls (e.g., network-related APIs) –
would have been confused by the prior example, and still
have made the same mistake.

ContextPrioritizer counters this problem by identify-
ing correlated system resource usage metrics as a deeper
means to understand the relationship between two apps.
The intuition underpinning this approach is that two apps
that have correlated resource usage (such as, memory,
CPU, network) are likely to have shared sensitivity to
similar context-based test cases. For example, in decid-
ing which test cases to first apply to the prior example
app (with sporadic network usage) this approach would
identify previous test apps that also had sporadic network
usage – recognized by similarities in network resource
consumption – and try test cases that also caused these
previous apps to crash.

The building block operation within ContextPrioritizer
is a pairwise similarity comparison between a new test
app, and a previously tested app. This is done for just one
system resource metric while both apps were exposed to
the same test case (i.e., the same context). A standard sta-
tistical test is performed to understand if the distribution
of the time-series data for this particular metric gener-
ated by each app is likely drawn from the same underly-
ing population (i.e., the distributions are statistically the
same.) To do this we use a standard approach and apply
the Kolmogorov-Smirnov (K-S) test [3]; assuming an α

of 0.05. The outcome of this test is binary, either the dis-
tributions are either found to be the same or they are not.
We expect other statistical tests (i.e., a K-S alternative)
would produce comparable results.

ContextPrioritizer uses the above described pairwise
comparison multiple times to construct a unique SimSet
for each new test app. During this process, ContextPri-
oritizer considers a collection of j resource metrics (the
same group used by ContextLib and listed in Table 2.)
For each resource metric the pairwise tests are performed
between the current test app and all prior test apps. In
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many cases, ContextPrioritizer is able to compare the
same pair of apps and same resource metrics more than
once (for example, under different test cases.) For the
prior test app to be included in SimSet it must pass the
statistical comparison test a certain percentage of times
(regulated by KSthres – set to 65% in our implementation.)

Importantly, no comparisons between the current and
previous test apps can be performed until at least a few
test cases are performed. ContextPrioritizer uses a boot-
strapping procedure to do this, whereby a small set of test
cases are automatically done before ContextPrioritizer is
invoked. We select these test cases experimentally by
identifying k test cases with a high initial rate of causing
crashes4. Bootstrapping is important only briefly as test
app data quickly accumulates once ConVirt begins.

Test Case History Categorization. As many crashes
are caused by abnormal resource usage (e.g., excessive
memory usage), they can be tied to resource metrics. The
motivation for such categorization is that each SimSet

should consider only crashes matching its resource met-
ric, in the Test Case Sequence Selection stage.

The intuition is that a rapid fall or rise in the resource
metric consumption immediately prior to a crash is a sig-
nal of a likely cause. For example, memory may in-
crease at a rapid rate immediately before a crash. Impor-
tantly, this process enables non-context related crashes
(e.g., division by zero) to be ignored during prioritiza-
tion. Crashes are assigned to one of the j monitored re-
source metrics (described earlier); otherwise, the crash
is categorized as being non-context related. Resource
consumption leading up to the crash (our current imple-
mentation uses a 120 second window) are tracked. Typi-
cally, the crash is then tied to the resource metric with the
largest gradient (either positive or negative) compared to
all other metrics.

Test Case Sequence Selection. ContextPrioritizer uses
a two-tiered voting process to arrive at the sequence of
test cases to be applied to the test app. At each tier the
voting setup is the same. Each time a test case results in
a crash is treated as a vote, any crash that is categorized
as being non-context related is ignored. The order of test
cases is determined by the popularity of crash causing
test cases tied to prior test apps contained within SimSet.

The first tier of voting operates at intra-resource metric
level – in other words, multiple voting process are per-
formed – one for each resource metric. Within each re-
source metric vote, only those prior test apps that passed
the pairwise comparison test for the resource metric in
question are included. By performing intra-resource
metric voting problems related to a diverse set resources
and contexts can be identified. By their nature some

4We set k to 3 and find the best test cases are: GPRS, 802.11b, 4G

Context
Dimension

Raw
Entries Description Source

Network 9,500+ Cellular in Locations Open Signal
Wi-Fi Hotspot
Cellular Operators

Platform 220/23 CPU Utilization Ranges Watson
(W8/WP8) Memory Ranges

Various 45 ... Hand-coded

Table 1: Context Library

resources-related issue occur much more frequently than
others – this approach helps this situation.

The second tier of voting operates between the top n
popular test cases selected from each resource metric. A
single test case is chosen, but this process is repeated
multiple times to determine a test case sequence. This is
typically done because ConVirt performs batches of test
cases rather than one test case at a time. At all stages,
ContextPrioritizer breaks ties by random selection.

5 ConVirt Implementation

This section presents our current implementation of the
testing framework components (see Figure 1). The entire
ConVirt implementation consist of approximately 31k
lines of code, broken into: ContextLib 1.9k; ContextPri-
oritizer 2.2K; AppHost 20K; and PerfAnalyzer 6.8K.

ContextLib. Our current ContextLib contains 10,504
raw mobile contexts, as summarized in Table 1. The al-
gorithms that rely on this data are described in §3.

The majority of the ContextLib currently uses Open
Signal [26] as an external data source. This public
dataset is comprised of crowd-sourced cellular measure-
ments collected around the world. Based on data from
Open Signal, we limit the number of cities to 400, which
include 50 mobile carriers. Additional examples of Con-
textLib tests are memory and CPU events that can be
sourced from telemetry databases (we use the Microsoft
Watson Database). Finally, we hard-code a number of
raw ContextLib records for challenging mobile scenar-
ios that are not supported by current context sources.

AppHost Coordinator. AppHosts are designed to run
either on real devices or in virtual machines (VM) for
testbed scalability. Currently we maintain a pool of Ap-
pHosts hosted on Microsoft Azure. A central server man-
ages each AppHost node via an RPC-like framework.
On Windows 8, Windows Management Instrumentation
(WMI) is used. But on Windows Phone 8, WMI is re-
placed by a test harness (TH) that communicates over IP,
providing the same functionality. Both the WMI and TH
interfaces are tightly integrated with PowerShell (a shell
environment for Windows), so each test executed is de-
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Figure 4: Implementation Components of AppHost

scribed in a PowerShell script that specifies the mobile
contexts to emulate. Finally, at the end of a test, the cen-
tral server imports the data to a MS SQL Server database.

AppHost. Each AppHost runs in a host virtual machine,
controlled by the AppHost Coordinator. AppHosts sup-
port both Windows 8 and Windows Phone 8 apps. As
shown in Figure 4, an AppHost is comprised of four main
components: 1) Controller, 2) UI Automation Service, 3)
Perturbation Service, and 4) Data Manager.

The Controller is responsible for the communication
with the rest of the ConVirt system and for orchestrating
the other components inside the AppHost. A sub-module
of the Controller, called AppHost Daemon, encapsulates
the OS-specific coordination of UI automation, context
emulation, and app monitoring. When the app under test
is a Windows 8 app, the controller and all other modules
run on the target OS. This allows Windows 8 apps within
AppHost to be exercised (with user input), observed (via
monitors and data manager), and for the context to be
carefully controlled (via perturbation).

To support Windows Phone 8 apps, an inner VM run-
ning the Windows Phone 8 OS is used. WP8 apps run in
this VM and are exercised and monitored with phone-
specific modules. The Controller and Data Manager
still run on Windows 8 unchanged. But the AppHost
Daemon, UI Automation Service, monitors, and a na-
tive layer of the Perturbation Service (drivers, for exam-
ple) run on the Windows Phone OS. Some perturbation
modules (Perturbation Proxy) are reused without change,
whereby the host OS has its context manipulated which
propagates into the phone VM (i.e., by altering the back-
ground context changes the context for the whole emula-
tor, for example, to throttle network traffic).

Monitoring Modules. Under Windows 8, two moni-
tors log system-wide and per-app performance coun-
ters through WMI. A third monitor collects crash data
from the system event log and the local WER sys-
tem. Finally, a fourth monitor hooks to the Event Trac-

ing for Windows (ETW) service to capture the output
of msWriteProfilerMark JavaScript method in Inter-
net Explorer; which allows writing debug data from
HTML5/JS Windows Store apps. Under Windows Phone
8, monitors also log crash data and system and app coun-
ters, but using OS-specific telemetry infra-structure.

Finally, under both platforms we enable an energy
consumption estimation monitor based on WattsOn [25].

Perturbation Modules. Network perturbation is im-
plemented on top of Network Emulator for Windows
Toolkit (NEWT), a kernel-space network driver. NEWT
exposes four main network properties: download/upload
bandwidth, latency, loss rate (and model), and jitter. To
which we introduced real-time network property updates
to emulate network transitions and cell-tower handoffs.

Modern VM managers expose settings for CPU re-
source allocation on a per-instance basis. By manipu-
lating these processor settings, we can make use of three
distinct CPU availability states: 20%, 50%, and 100%.
To control the amount of available memory to apps, we
use an internal tool that allows us to change available
system commit memory. AppHost then uses this tool
to create the required levels specified by the current test
context. Finally, we implemented a virtual GPS driver
to feed apps with spoofed coordinates and other GPS re-
sponses. Upon receiving a valid UDP command, our vir-
tual GPS driver signs a state-updated event and a data-
updated event to trigger the OS location services to re-
fresh the geolocation data.

As noted, the Windows Phone 8 AppHost can lever-
age part of the perturbation layer (like CPU or network
throttling), rather than implementing its own.

User Interaction Model. As Windows 8 Store apps and
Windows Phone 8 apps are “page”-based, the app UI is
represented in our model as a tree, where nodes represent
the pages (or app states), and tree edges represent the
UI element being invoked. We generate a usage tree for
each scenario with a stand alone authoring tool, which
allows the user to assign a weight to each UI element.
Higher weights indicate a higher probability of a par-
ticular UI element being invoked. Due to platform dif-
ferences in user interface automation APIs (i.e., W8 vs.
WP8) we implement two native UI actuators, each using
a OS-specific automation framework.

PerfAnalyzer. To report actionable feedback to de-
velopers PerfAnalyzer focuses on two areas: (1) System
resource consumptions that are higher than expected un-
der certain contexts (e.g., energy bugs); and, (2) Crashes
linked to additional data towards identifying root causes.

Performance Outliers. To determine if the target app
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under a test case exhibits abnormal behaviour, we first
find the set of similar apps over measurements from all
other test cases (see §5). Then, we perform MeanDIST-
based outlier detection [18], and see whether the test app
is in the outlier group. Our current implementation as-
sumes 5% of the population are outliers, which can be
adjusted as we collect developers’ feedback. Users can
filter and rank outliers within a table view based on: (1)
the frequency at which they occur; (2) the magnitude in
difference to the comparison ’norm’; and (3) a particular
metric type (e.g., network-related). Limited support for
simple visualizations (e.g., bar charts) are also provided.

Crash Analysis. To collect and interpret crash data Con-
Virt connects with the Microsoft WER (Windows Error
Reporting), a service on every Windows system to gather
information about crashes for reporting and debugging.
WER aggregates error reports likely originating from the
same bug by a process of labeling and classifying crash
data. More details on WER can be found in [10]. The
resulting data is then correlated to changes in resource
consumption prior to the crash for reporting.

6 Evaluation

This section is organized by the following major results:
(1) ContextLib is able to effectively trade-off the rate of
discovering app problems (e.g., crashes) while reducing
the number of test cases required; (2) ContextPrioritizer
can find up to 47% more crashes than the conventional
baselines, with the same amount of time and computing
resources; (3) ConVirt increases the number of crashes
and performance outliers found over the current practice
by a factor of 11× and 8×, respectively; and (4) we share
lessons learned to help developers improve their apps.

6.1 Methodology

In the proceeding experiments, we use two datasets that
are tested using our ConVirt prototype hosted in Azure
(see §5), specifically: (1) 200 mobile Windows 8 Modern
apps that target the Microsoft Surface Tablet PC (referred
to subsequently as W8 apps); (2) 30 Windows Phone 8
Modern apps that target smartphones (referred to subse-
quently as WP8 apps.) All apps are free to download
from the Microsoft Windows Store and Windows Phone
Store, respectively.

To define our test case workload we first pick three
representative cities from different continents with a
large number of mobile device users: Seattle, London,
and Beijing. Next, we utilize ContextLib to generate a to-
tal of 350 test cases. We use the standard context sources
part of our current ContextLib implementation listed in

Resource
Type Description

Network {datagrams/segments} {recieved/sent} per sec
total TCP {connection/failure/active}

total TCP {established/reset}
Memory current amount of % {virtual/physical} memory used

max amount of % {virtual/physical} memory used
{current,max} amount of % {paged} memory used

CPU % {processor/user} time
Disk bytes {written/read} per sec

Table 2: System Resources used in ConVirt prototype
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Figure 5: ContextLib Deep App Experiment.

Table 1. In addition, we add five hand-coded network
profiles not present in the Open Signal database, namely:
802.11b, WCDMA, GPRS (out of range), GPRS (hand-
off), 4G – these are familiar network scenarios to devel-
oper. We limit the potential memory configurations gen-
erated by ContextLib to just two to focus more closely
on the networking parameter space.

We configure ConVirt to test individual apps three
times under each test case, with an individual test ses-
sion under one test case being five minutes in duration.
Table 2 lists the 19 system resource metrics and perfor-
mance counters logged during our experiments.

6.2 Mobile Context Test Space Exploration
Our first experiments examines two key components of
ConVirt, namely: ContextLib and ContextPrioritizer.

6.2.1 ContextLib

To investigate the effectiveness of the ContextLib, we
perform the following two experiments. In each exper-
iment we compare the detection rate of crashes assum-
ing ConVirt is executed with different parameterizations
of ContextLib. The objective is to observe how many
crashes go undetected as the number of test cases is low-
ered. If ContextLib is effective, it will be able to main-
tain reasonably high crash detection rates even when the
number of test cases drops dramatically.

Figure 5 shows an experiment using four representa-
tive Windows 8 Modern Apps – one from four distinct
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Figure 6: ContextLib Broad App Experiment.

app categories. By using fewer apps we are able in this
experiment to use a large number of raw context, specif-
ically: 500. Using ConVirt we test each app under each
raw context. On average, each app crashes 16 times. We
then repeat this experiment but use ContextLib to pro-
duce a library of representative test cases, and vary the
size of the library. The figure reports the per-app aver-
age crash number. It shows by using ContextLib we are
able to find a relatively high fraction of the crashes even
as the number of test cases is lowered. For example, we
find on average by using only 60 test cases (only 12% of
the original total) we are able to find 50% of all crashes.

Figure 6 presents an experiment with the same
methodology except for a much larger number of apps.
We use 50 of the Windows 8 Modern Apps detailed in
§6.1, but consequently must lower the number of raw
contexts used to only 200. In this figure we report the
total number of crashes in this app population. When
testing all the raw contexts we find in total there are 312
crashes. Again we find ContextLib to be effective in
discovering most of these app crashes with significantly
fewer than the total raw contexts. Figure 6 shows Con-
textLib is able to find around 60% of all of these crashes
using only ≈ 35 test cases.

6.2.2 ContextPrioritizer

The evaluation metric is the number of crashes found as
(1) the time budget varies, and (2) the amount of avail-
able computing resource varies. We used three compari-
son baselines. First, Oracle has the complete knowledge
of the measurements for all apps (including untested
ones), and it represents the upper-bound. Random is a
common approach that randomly picks an untested case
to run at each step. Finally, Vote does not rely on finding
apps with similar behavior, and uses test cases that yield
the most crashes in all previously tested apps.

Time Budget. We start with the question: given suffi-
cient time to exercise the target app under x test cases,
which x cases would reveal the most number of crashes.
We note that a one test case runs for a fixed duration (e.g.,
five minutes). Figure 7 shows the results with the Win-
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Figure 7: The number of crashes found by different techniques
under different time budget.
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Figure 8: Feasible combinations of time and computing budget
to find at most 10 crashes in each of the 200 Windows 8 apps.

dows 8 dataset, and we highlight two observations.
First, ConVirt reports a higher number of crashes than

Random and Vote. On average, ConVirt can find 30.90%
and 28.88% more crashes than Random and Vote, respec-
tively. We note the ConVirt exhibits the most gain when
the time budget is relatively limited, or selecting less than
60% of all test cases. In fact, ConVirt can find up to
47.63% and 77.61% more crashes than Vote and Ran-
dom, respectively. These results demonstrate the gain
from two mobile app testing principles: learning from
app test history, and considering only apps with similar
behavior in resource consumption.

Second, as the time budget increases, the testing tool
has more time to explore the entire testing space. There-
fore, the probability of picking the set of test cases with
crashes also increases. This suggests that the gain from
using different techniques will eventually experience a
diminishing return. In our dataset, the boundary is at
around 60 test cases, or around 85.71% of all test cases.

Resource Tradeoff. An important observation is that,
since app testing is highly parallelizable, multiple apps
can be exercised at the same time on different machines.
At the extreme with an infinite amount of computing
resources, all prioritization techniques would perform
equally well, and the entire dataset can finish in one test-
case time. Given this assumption is not practical in the
real world, we calculate the speed up that ConVirt offers
under various amounts of available computing resources.
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Figure 8 illustrates combinations of computing re-
sources and time required to find at most 10 crashes in
each of the 200 Windows 8 Store apps. First, the fig-
ure shows increasing the resource in one dimension can
lower the requirement on the other. Second, by estimat-
ing the information gain of each pending test case, Con-
text Fuzzer can reach the goal faster and with fewer ma-
chines. For example, given 4425 minutes of time bud-
get, ConVirt needs 294 machines – 33% less. Finally,
the break-even point for Random is at the time budget of
6,630 minutes, or > 90% of the total possible time for
testing all combinations of apps and test cases.

6.3 Aggregate App Context Testing

In our next set of experiments, we investigate crashes and
performance outliers identified by ConVirt within a set of
popular publicly available mobile apps.

Comparison Baseline. We compare ConVirt to a con-
ventional UI automation based approach as a compari-
son baseline. This baseline represents current common
practice for testing mobile apps. To implement a UI au-
tomation approach we use the default UIM already part
of ConVirt (see §5.3). However, during app testing under
the UI automation approach context is never perturbed.

To perform these experiments everything is repeated
twice. Once using ConVirt and then repeated under the
UI automation approach. Since the setup is identical for
each run of the same app, differences in crashes and per-
formance outliers detected are due to the inclusion of
contextual fuzzing by ConVirt.

Summary of Findings. Overall, ConVirt is able to
discover significantly more crashes (11.4×) and perfor-
mance outliers (8.8×) than the baseline solution for W8
apps. And approximately 5.5× more crashes and 9×
more outliers for WP8 apps. Furthermore, with ConVirt,
75 out of the 200 W8 apps tested observe at least one
crash – in aggregate, ConVirt discovers a total of 1,170
crash incidents and 4,589 performance outliers. Simi-
larly, 17 of the 30 WP8 apps crash 192 times and register
635 performance anomalies. This result is surprising, as
these apps are in production and have passed testing.

Findings by Categories. Figure 9 shows the number
of crashes and performance outliers categorized by app
source code type: HTML-based vs. compiled managed
code. The observation is that ConVirt is able to identify
significantly more potential app problems across both
categories. For example, in both categories, this differ-
ence in the number of outliers found is a factor of ap-
proximately 8×. It is important to note that all tested
WP8 apps are managed code apps.

Table 3 categorizes apps in the same way as the Win-

Figure 9: App performance outliers and crashes categorized
by app source code type.
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Figure 10: App performance outliers, by resource usage.

dows Store. It shows that media-heavy apps (e.g., music,
video, entertainment, etc.) tend to exhibit problems in
multiple contexts. This observation supports the use of
contextual fuzzing in mobile app testing.

Figure 10 shows performance outliers broken down by
resource type. The figure suggests that most outliers are
network or energy related. Both disk activity (i.e., I/O)
and CPU appear to have approximately the same number
of performance outlier cases.

Time to Discovery: Comparison with Crash Report
Analysis. In an effort to understand how the time taken
for ConVirt to identify crash conditions compares to the
analysis of user submitted crash reports we are given lim-
ited access to the WER backend database (see §5). We
are provided with the internal WER reports for all the
crashes ConVirt is able to find during our experiments.
Our preliminary analysis of this data compares how long
it took for these same crashes to appear in WER database
after the app was released.

Overall, we find for W8 apps ConVirt takes, on aver-
age, only 11.8% (std dev 0.588) of the time needed by
WER. Similarly, for WP8 apps this percentage is even
lower at 1.3% (std dev 0.025). We speculate that the bet-
ter performance of WP8 is related to their lower com-
plexity and current lower adoption rates than W8.

6.4 Experiences and Case Studies

Finally, we highlight some identified problem scenar-
ios that mobile app developers might be unfamiliar with,
thus illustrating how ConVirt can help prevent ever more
common context-related bugs and performance issues.
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Location Bugs. Seemingly every mobile app today is
location-aware. Unfortunately, location also introduces
the opportunity for developer errors – location bugs. We
now detail one representative location bug, concerning
an app released by a US-based magazine publisher. Test
results from ConVirt emulating location (i.e., GPS input
and network conditions) discovered while the app was
robust in the U.S it was very brittle in other countries.
For example, we find the app is 50% more likely to crash
under Chinese conditions compared to U.S conditions.

Network Transitions. Mobile devices experience net-
work transitions frequently throughout the day. For ex-
ample, handoffs from Wi-Fi to 3G when the user leaves
their home, and in the reverse direction once they arrive
at work. It is critical apps be robust to such transitions.

During tests, ConVirt uncovered a prototypical exam-
ple demonstrating these issues in a popular Twitter app.
We noticed frequent crashes under certain network con-
ditions. By performing a larger number of test itera-
tions we find that whenever a (simulated) user attempts
to tweet during a network handoff from a “fast” (e.g., Wi-
Fi) to “slow” (e.g., 2G) network, the app crashes nearly
every time. Without the source code, it is hard to know
the root cause of the issue. However, it is a clear example
of the type of feedback that are possible using ConVirt.

Exception Handlers. During our experiments, we no-
tice a group of music streaming apps some of which tend
to crash with higher frequency on slow and lossy net-
works. By performing decompiled code analysis [32],
we find that the less crash-prone music stream apps ap-
ply a significantly more comprehensive set of exception
handlers around network-related system calls. Although
not surprising, this highlights how ConVirt is a promis-
ing way to compare mobile apps at scale and develop
new best practices for the community.

Unintended Outcomes from Sensor Use. ConVirt
highlighted an interesting energy bug within a location

ConVirt Monkey ConVirt Monkey
(Outliers) (Instance of Crash)

News 1437 147 284 24
Entertainment 667 62 101 6
Photo 90 10 17 1
Sports 304 41 194 15
Video 688 123 142 12
Travel 238 12 25 1
Finance 193 13 0 0
Weather 31 2 1 0
Music 737 85 289 38
Reference 161 18 0 0
Social 43 5 116 5

Table 3: App crashes and performance outliers categorized the
same as the Windows Store.

tracking app. The app registers for location updates to
be triggered whenever a minimum location displacement
occurs. However, we find the app set the threshold to be
very tight (we estimate≈ 5m accuracy). During ConVirt
testing we perturb the reported accuracy of the location
estimate provided to the app (see §5.3). We find at typ-
ical location accuracy values (≈ 25m) the app requests
location estimates at a much higher frequency. As a re-
sult, the app consumes energy at much higher rates than
expected. This unexpected outcome would be otherwise
hard to recognize during non-context based testing.

7 Discussion

We discuss some overarching issues related to ConVirt.

Generality of the System. Besides app testing, our tools
and algorithms can be applied to other scenarios. In pri-
vacy, outlier detection (with similarity tests) can iden-
tify apps that access or transmit personal data differ-
ently from the norm. In energy optimization, contextual
fuzzing can help determine whether an app would expe-
rience significant performance degradation on slower but
more energy-efficient radios.

Real-World Mobile Context Collection. While our sys-
tem utilizes real-world data to emulate mobile contexts,
we recognize that some datasets are difficult to collect.
For example, an extensive, easily generalized, database
regarding users app interaction is not yet available. We
leave the problem of developing an expanded set of con-
text sources as future work.

Context Emulation Limitations. While ConVirt cur-
rently exposes only coarse-grained hardware parameters
(i.e., CPU clock speed and available memory), it can ac-
commodate real devices in the test client pool to achieve
hardware coverage. However, our system lacks support
for sophisticated user gestures and low-level hardware,
such as Wi-Fi energy states. We leave the support for an
expanded perturbation layer as future work.

Applicability To Other Platforms. While our proto-
type runs on Windows 8 and Windows Phone 8, the core
system ideas also work on platforms (e.g., Android). Be-
cause our design only makes a black-box assumption re-
garding access to app source code ConVirt is much easier
to port to alternative mobile platforms.

8 Related Work

In the area of software testing, our work proposes to ex-
pand the testing space for mobile apps to include real-
world context. Our results complement existing tech-
niques, including static analysis and fault injection.
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Mobile App Testing. There are industrial telemetry
solutions on mobile devices such as Microsoft Windows
Error Reporting (WER) [10]. AppInsight [28] adds sig-
nificant visibility into the critical paths of asynchronous
and multi-threaded mobile apps. Carat [5] focus on en-
ergy diagnosis by periodically uploading coarse-grained
battery measurements and system status. Finally, a num-
ber of services analyze telemetry logs [8, 6, 4, 33]. Un-
like ConVirt, these are post-release solutions, so users
are exposed to app faults.

A number of proactive testing tools are available.
However, most tools cover only a small subset of mobile
contexts. First, Windows and Android offer specialized
tools [15, 14, 22] and libraries [24] for custom UI au-
tomation solutions. Also, significant effort has been in-
vested into generating UI input for testing with specific
goals in mind (e.g., code coverage) [36, 16].

Second, some testing tools can emulate a limited
number of predefined network conditions. This emula-
tion can be controlled either manually [15, 23] or via
scripts [20]. In contrast to ConVirt, these tools do not al-
low automatic fine-grained control over network param-
eters, nor accurate emulation of mobile network contexts
such as network hand-offs (e.g., 3G to Wi-Fi).

State Space Exploration. The software testing commu-
nity has proposed techniques to efficiently explore pro-
gram state space, which mostly rely on hints extracted
from the source code or test history of the target program.

Whitebox fuzzing is one technique that requires
source code. For example, SAGE [12] tests for secu-
rity bugs by generating test cases from code analysis. [1]
explores code paths within mobile apps and reduces path
explosion by merging redundant paths. Model checking
is another popular technique, where the basic idea is to
build models of the test target via knowledge of specifi-
cation or code [17]. Model checking has also been used
in other communities such as distributed systems [37].
Finally, [13] propose a test case prioritization scheme
that exploits inter-app similarity between code statement
execution patterns. However, because ConVirt does not
require source code it is more broadly app compatible.
Directed testing, e.g. DART [11], is a category of tech-
niques that implement a feedback loop for the same app.
ConVirt uses similar techniques, but across apps.

Simulating Real-world Conditions. ConVirt targets
context emulation. Other domains, notably sensor net-
works, have also developed testing frameworks [21], in-
corporated energy simulation [29], and support execu-
tion emulation [34]. While ConVirt conceptually shares
similarities with this work, its foundations are in mobile
context not present in these domains, such as network
transitions, mobility patterns, and hardware diversity.

9 Conclusion

This paper presents ConVirt, a testing framework that
applies the contextual fuzzing approach to test mobile
apps over an expanded mobile context space. Results
from our cloud-based prototype suggest that ConVirt can
find many more app performance problems than existing
tools that consider none or a subset of the mobile context.
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