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The mobile app ecosystem continues to rapidly grow in importance as an increasing proportion
of our daily computing needs shift away from desktop machines in favor of mobile devices. How-
ever, mobile apps must cope with extremely diverse operating conditions due to factors like device
fragmentation, wireless network heterogeneity and varied user behavior. App developers and dis-
tributors (i.e., operators of app marketplaces) lack testing tools that can effectively account for such
diversity and, as a result, app failures and performance bugs (e.g., excessive energy consumption)
are commonly found in mobile apps today. Towards addressing this challenge to mobile app de-
velopment, we have developed key techniques for scalable automated mobile app testing within two
prototype app testing services – VanarSena and Caiipa. In this paper, we describe SMASH – our
vision for a single unified cloud-based mobile app testing service that will combine the strengths
of the VanarSena and Caiipa systems towards solving the complexities presently faced by testers of
mobile apps.

I. Introduction

For the majority of users world-wide, computing has
evolved to be now largely defined by their mobile devices
and the apps that run on them. The apps are distributed
through app stores that are brutally competitive [22, 21].
For an app to succeed, it must not only offer a useful ser-
vice, but also provide a good user experience. An app
that performs slowly or crashes frequently may easily be
doomed to obscurity as unforgiving users quickly switch
to alternate apps and/or leave poor reviews in app stores,
discouraging new users to use it. To avoid such conse-
quences, app developers therefore need to make sure that
their apps run smoothly not just in their development en-
vironment, but also in the wild, in the hands of real users.
Similarly, distributors of apps operating mobile app mar-
ketplaces must make sure apps in their catalogs meet cer-
tain standards of performance and quality.

Ensuring this, however, is extremely challenging [25,
1, 17]. Unlike traditional “enterprise” software, mobile
apps are often used in more uncontrolled conditions, in a
variety of different locations, over different wireless net-
works, with a wide range of input data from user inter-
actions and sensors, and on a variety of hardware plat-
forms. For example, wireless network speeds and laten-
cies can fluctuate by a 100-fold at different locations across
the world [12], mobile devices themselves differ by screen
size, CPU speed, available memory and operating system
versions [16]. An app running smoothly in the development
environment with a good wireless network and a powerful
device may run very slowly or crash when a user runs it
with poor network and a weaker device. The space of real
world conditions that an app may run on can be extremely
large and coping with all the issues can be particularly acute
for individual developers or small teams [24].

Existing mobile app testing tools available during the de-

velopment process – for example those that perform static
(e.g., [4, 10, 19]) or conventional-forms of dynamic anal-
ysis [13, 3, 20] – are not well-suited to this challenge.
The principle limitation of existing techniques is their con-
strained ability to test app behavior under complex real-
world conditions. At best, recent dynamic testing tools that
exercise a mobile app by simulating user interaction are
able to do so while simulating a small number of generic
contexts, such as, 3G or WiFi network connections (e.g.,
[14, 11]). But such tools support only a small fraction of
the conditions encountered in the real-world and do not at-
tempt to represent complex environments in which multi-
ple conditions (e.g., type of user, network, location, device
state) can contribute towards unexpected consequences that
negatively effect the app. As a result, app developers and
distributors must heavily rely on the post-facto analysis
of telemetry data (e.g., [2, 6, 23]) collected from a de-
ployed mobile app, as a means catch many bugs related
to users, devices and the environment. Although, this ap-
proach exposes apps to real-world conditions, developers
get a chance to fix their bugs only after the apps are used by
real users. It is often too late – users have already been ex-
posed to buggy apps and posted poor ratings, discouraging
new users to even give a chance to (potentially bug-fixed
version of) the apps.

To address these challenges, we have recently developed
two tools Caiipa [5] and VanarSena [18], which allow de-
velopers to automatically test their apps under a variety of
conditions. Both tools have their strengths and their weak-
nesses, and the goal of this paper is to briefly describe
how the tools can be combined into an unified system, that
we plan to call Scalable Mobile App Software Hardening
(SMASH).

SMASH would consist of a configurable environment
into which apps can be installed and their functionality ex-
plored. During exploration the app can be systematically
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Figure 1: SMASH Usage Scenarios

exposed to a variety of environments and system events.
For example, a music streaming app might be repeatedly
exercised through common user operations (e.g., playing
music, changing songs) while facing a variety of broad net-
work conditions (e.g., a 3G to WiFi network hand-off) and
common network faults (e.g., HTTP protocol error codes).
During tests both the app and general system behavior can
be closely monitored for problems ranging from the obvi-
ous, such as app crashes, to the subtle including memory
leaks or excessive energy consumption. A key enabler for
this approach is the use of cloud infrastructure allowing the
number of hosting environments to be scaled up as required
based on the number of relevant tests or completion time
requirement. However, support for app execution on real
hardware is also provided to cover specific scenarios and to
provide performance baselines.

We envision deploying SMASH as a testing service. An
app developer should be able to submit an app binary to
the system, and then within a short amount of time obtain
a report. This report should include performance problems
or crashes, for each such problems, app’s execution point
(e.g., a stack trace for a crash) and external conditions (e.g.,
poor network condition) that triggered it. In a like manner,
app distributors should be able to submit apps requested
to be listed an app marketplace and determine if this app
meets distributor-defined policies for app robustness and
resource consumption.

The remainder of this paper is structured as follows. We
begin in Section II by first outlining the design consider-
ations of SMASH. Section III continues by presenting a
high-level description of SMASH and outlines how the in-
dividual techniques found in VanarSena and Caiipa operate
together within SMASH. Section IV presents the status of
Caiipa and VanarSena towards building SMASH. Finally,
we provide concluding remarks in Section VI.

II. SMASH Goals and Challenges

Our goal is to build a scalable, easy to use system that tests
mobile apps for frequently occurring, externally-inducible
faults as thoroughly as possible. As illustrated in Figure 1,
we target two specific types of end-user scenarios:

• App developers who use SMASH to complement
their existing testing procedures by stress-testing code
under hard to predict combinations of contexts.

• App distributors who accept apps from developers
and offer them to consumers (such as, entities operat-
ing marketplaces of apps) – distributors must decide if
an app is ready for public release.

Since we anticipate the system being in daily use by both
user categories – for example, in the case of the developer
using it interactively while debugging; or, in the case of
distributors whenever new batches of apps are submitted
for release – we want to return the results of testing, in
form of an actionable report, to users as quickly as possible.
Finally, we want the system to be deployable as a cloud
service in a scalable way.

II.A. Thoroughness

For SMASH to achieve its goal of thoroughness when
testing for frequently occurring, externally-inducible faults
our design targets the following characteristics.

High Execution Coverage. While testing an app,
SMASH aims to execute as many of its execution paths
as possible. Since mobile apps are UI-centric, one way to
measure execution coverage is to use page coverage that
represents the fraction of unique app pages visited by the
system while testing an app. SMASH aims to maximize
page coverage within a given time budget.

High Fault Coverage. While executing an app for
testing, SMASH exposes it to many external environments
or faults. Examples of faults include poor network connec-
tion, malfunctioning sensor, a hardware device with small
screen, etc. Since the space of possible faults is potentially
infinite, SMASH aims to cover the most common faults
that appear in the wild.

Performance, Not Just Bugs. The resource usage of
apps, such as energy, is just as important to the correctness
and robustness of a given app. Users would be unwilling
to use an app that quickly exhausts battery, no matter how
“robust” it is. Thus, it is important for a testing solution to
report test results that carefully consider app performance
and efficiency – especially under changing conditions.

II.B. Scalability and Speed

We want SMASH to scale to testing a large number of apps.
SMASH needs to thoroughly test each app and generate
test results within a matter of hours, so developers and app



Figure 2: SMASH Architecture

distributors can more easily incorporate SMASH into their
work flow.

A number of obstacles typically limit the scalability of
app testing. First, the amount of time necessary to simulate
faithfully UI interactions with apps can be time consuming.
For example, waiting for app network traffic to complete
before progressing to the next UI interaction. Second, app
distributors release hundreds of new apps to the public ev-
eryday [8, 7]. Each of these must be verified before this can
be done. Distributors often only have 20 or 30 minutes to
examine an app and decide if it should be released – further
motivating SMASH to operate efficiently.

II.C. Actionable Reports
Test results must be customized for each end-user. For ex-
ample, an app distributor may require analysis of test re-
sults with respect to certain store policies (such as, max
CPU load on the device, or a time limit for app startup).
Alternatively, a developer will require much more detailed
outputs (e.g., stack traces, root cause analysis, causal re-
lationship between various asynchronous calls) that direct
them towards which part of the app should be debugged
and how to decide what problems to address first.

III. SMASH Architecture

At a high level, SMASH will consist of three components:
(1) an app interaction engine that executes and manipulates
the app; (2) an execution environment that exposes the ex-
ecuting app to various external conditions and injects var-
ious faults; and (3) an analysis engine that processes and
reasons over the collected data to produce a tailored report
for the system user. For certain apps, SMASH can also use
an instrumenter, to instrument the app binary. A test sched-
uler module controls the workflow of the system. Figure 2
illustrates the SMASH architecture.

III.A. App Interaction Engine
The App Interaction Engine will spawn a number of mon-
keys to test the app. A monkey is a UI automation tool to
explore various parts of an app. It can launch the app on
a real mobile device or an emulator and interact with it by

mimicking user interactions (e.g., clicking a button or swip-
ing a page) to recursively visit various pages of the app.
The monkey can thus explore the UI-state transition graph
of the app, where each page corresponds to a UI-state and
each interaction results in a state transition. The key opti-
mization goal of a monkey is to maximize the number of
explored states (i.e., coverage) within a given time budget
(i.e., speed). If the app is instrumented, this exploration can
be aided by the information collected by the instrumenta-
tion. In addition, an initial instrumented run can generate
data to inform subsequent tests.

SMASH will incorporate various optimizations de-
scribed in Caiipa and VanarSena to improve coverage and
speed of the monkey.

First, SMASH will try to prune the state space without
sacrificing testing coverage. It can identify all state transi-
tions that invoke the same event handler or lead to a similar
state and will explore only one of such transitions. Sec-
ond, it can dynamically track when a state transition has
completed so that it can immediately initiate the next tran-
sition. Third, in addition to exhaustively exploring the UI-
state graph, it can prioritize its exploration paths so that
more important states (e.g., states that are visited by real
users more often, given by the developer or identified by
telemetry data from real users) are explored before others.
SMASH can exploit a User Interaction Model, built based
on telemetry data of real app usage, that generates user
events (e.g., touch events, key presses, data input) based on
weights (i.e. probability of invocation) assigned to specific
UI items. Such prioritization is useful when the monkey
does not have enough time to explore all UI-states or when
the developer wishes to test for problems that are more
likely to affect real users. Finally, it can utilize semanti-
cally meaningful inputs such as login/passwords, unique
gestures, etc. provided by the developer, which are needed
for transitioning to various UI-states but a fully automated
system cannot generate.

For scalability, we assume that multiple parallel runs of
the apps do not affect each other. Thus, the execution en-
gine can spawn a large number of monkeys, each testing
the app for a given external condition.

III.B. Execution Environment
The goal of each instance of the Execution Environ-
ment is to systematically emulate various operating con-
ditions while the App Interaction Engine exercises an app.
SMASH selects conditions that (1) occur in the real world
and (2) are “unusual” enough to be missed or hard to pro-
duce by most developers while testing their own apps. For
thoroughness, SMASH will consider a diverse set of faults,
due to environment (e.g., network connectivity, locations),
device (e.g., low memory), user behavior (e.g., impatient
interactions), sensors (e.g., sensor timeout), inputs (e.g., in-
correct text inputs), etc.

The key challenge is to identify what external conditions
to emulate. SMASH will leverage two types of data sources
to address this: (i) databases of historical crash or teleme-
try data; and (ii) collected data about mobile environment
dimensions (e.g. network conditions, CPU and memory



availability, sensor output). SMASH will mine databases
of historical crash or telemetry data to identify and rank
(for example, by frequency) common faults (i.e., problem-
atic situations) and emulates the most common faults to in-
duce problems in the app. Our initial experience from an
analysis of 25 million real-world crashes shows that most
of them are caused by a small number of root causes, mak-
ing it feasible for SMASH to systematically induce them to
app to test if the app would crash in the wild due to those
common situations. A few examples of common faults are
impatient user interaction while the app is still loading a
page, malformed XML data from the network, slow net-
work, etc. SMASH can induce such faults by an impatient
monkey, a network proxy, and a network emulator, respec-
tively.

To go beyond testing for previously detected common
scenarios, SMASH will also use a representative, yet com-
prehensive, library of context stress tests from large repos-
itories of available context sources. It will use machine
learning techniques to identify representative contexts by
(i) determining which combinations of contexts are likely
to occur in the real world, and (ii) removing redundant
combinations of contexts. This library generation process
will be fed using datasets collected from real devices (e.g.,
WER1 [9], OpenSignal [15]) in addition to challenging
mobile contexts defined by domain experts. This process
will happen as a pre-processing step that is re-run peri-
odically with updated source data. With such a context
library, SMASH can simulate conditions, such as differ-
ent CPU performance levels, amount of available mem-
ory, controlled sensor readings (e.g., GPS drivers reporting
programmatically defined locations), and different network
parameters to simulate different network interfaces (e.g.,
WiFi, GPRS, WCDMA), network quality levels, and net-
work transitions (e.g., 3G to WiFi) or handoffs between cell
towers.

SMASH can also prioritize test cases for a given app.
To this end, it will use a learning algorithm that leverages
similarities between apps to identify which conditions are
most likely to impact previously unseen apps via observa-
tions from previously tested apps. Based on such similar-
ities, SMASH can determine the order in which test cases
are applied to specific apps. As each new set of results is
reported, tests can potentially be re-prioritized.

III.C. Analysis Engine

At the end of testing an app, SMASH will generate a re-
port that the developer can use to reproduce the problem
and to pinpoint the code point and likely causes behind it.
The information will include replay logs and detailed user
transaction traces that elucidate the causal relationship be-
tween user actions, various thread invocations, and the per-
formance problems/crashes.

In addition to reporting crashes, SMASH also detects
and reports anomalous app performance. Understanding
app performance data (e.g., energy, latency) is challeng-
ing, because it is difficult to identify truly abnormal app
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behavior compared to changes in performance that are un-
avoidable given the conditions to which the app is exposed.
SMASH will use several techniques, that build upon the
techniques used in Caiipa. For example, to determine “nor-
mal” behavior in a given setting, SMASH will consider the
performance of previous runs of the same app, as well as
that of other apps that are similar to the target app. Looking
at how different metrics are affected by changes in context
helps identify the real anomalous cases.

Finally, since the number of issues that appear to re-
quire investigation can be quite large; SMASH will also
provide rankings of severity issues to help developers pri-
oritize their time.

IV. Progress Towards SMASH

Assembling SMASH will be simplified because of the two
already working mobile app testing prototypes – Caiipa
and VanarSena. Each prototype has been used to evalu-
ate and explore separate techniques and scenarios required
by SMASH.

Caiipa aims to stress test mobile apps to cover a wide
range of potential real-world conditions apps may en-
counter. Caiipa is designed to test an app under conditions a
developer never anticipated occurring. Tests consider both
app failures as well as identifying resource consumption
outliers (e.g., excessive energy consumption).

In contrast, VanarSena seeks to efficiently test common
case failure conditions of mobile apps – attempting to catch
root cause conditions that are responsible for the majority
of failures observed in the wild. VanarSena focuses on app
failures (i.e., crashes) only but can generalize to anomalous
resource consumptions using techniques similar to those
developed by Caiipa.

IV.A. Caiipa

As illustrated in Figure 3, Caiipa [5] has been deployed as
an internal service available to Microsoft employees. The
Caiipa service tests mobile apps under a variety of mobile
environment conditions, including network bandwidth and



quality, varied device types, memory levels, locations, and
running key tests on real hardware.

At a high-level, its workflow is similar to the one for
SMASH, shown in Figure 2. The responsibility of select-
ing which environments to be run by the Environment Em-
ulation Engine belong to two components under Caiipa: (i)
a generator of context library tests and (ii) a prioritizer that
selects the most important test to run next for a given indi-
vidual app or group of apps. These two modules are key to
scalably search the space of real-world conditions.

By focusing on the impact of mobile contexts in app
behaviour, Caiipa’s default interaction engine is relatively
simple and is most effective when primed with specific se-
quences of user interaction (e.g., by the developer) – other-
wise a simple weighted exploratory user model is applied.
However, the system is built such that the UI manipulation
module can easily be replaced.

One limitation of interaction interface comes from
adopting a black-box approach during app testing. How-
ever, this allows the system to test any app regardless of the
languages and tools (e.g., JavaScript, C#, Silverlight) used
during development, which are common in the Windows
app ecosystem.

To cover a wide breadth of mobile conditions, Cai-
ipa currently includes a large context library (10,504 test
cases). Test cases are synthesized largely from databases
containing global conditions of cellular and WiFi networks,
but also memory and CPU test events sourced from Mi-
crosoft WER [9].

Caiipa tested 265 commercially available Windows
Store and Windows Phone 8 apps in depth. Our results
show that test prioritization can find up to 47% more
crashes than the conventional baselines, with the same
amount of computing resources. Additionally, by consid-
ering the different real-world contexts, Caiipa detects 11×
more crashes and 8× more performance problems.

IV.B. VanarSena
VanarSena architecture is described in detail in [18]. Va-
narSena is designed to thoroughly test mobile apps for a
small set of externally inducible common faults using a
greybox approach. It neither treats the app as a blackbox,
nor does it try to understand the app semantics (i.e. white-
box testing). Instead, it instruments the app binary and runs
it within the Windows Phone Emulator using an UI automa-
tor monkey. Several fault inducing modules (FIMs) induce
faults such as network errors and simulating an impatient
user. Both the monkey and the FIMs rely on information
collected by the added instrumentation to speed up app test-
ing without sacrificing coverage.

VanarSena uses two main techniques for improving
speed of testing. The first one is called hit testing. When
presented with the app UI, VanarSena uses hit testing to
quickly classify various UI controls (buttons, lists, etc.)
into equivalent classes, such that controls within a class ex-
ercise the same code path in the app. The UI automator
then invokes only one control from each class, which con-
siderably speeds up testing. Second, the added instrumen-
tation generates ProcessingCompleted event, which allows

the UI automator to precisely decide when to interact with
the app next.

The current implementation of VanarSena can test apps
written in C# (Sliverlight) for Windows Phone platform.
We tested 3,000 apps from the Windows phone market-
place using VanarSena, and uncovered 2,969 distinct faults,
of which 1,227 were previously unreported.

V. Conclusion

In this paper, we have described how we plan to integrate
features from Caiipa and VanarSena to build SMASH. Cur-
rently both systems address different requirements. Va-
narSena is currently being incorporated in Microsoft’s in-
ternal quality assurance toolchain. While Caiipa is in use
by partner product teams during app development. Need-
less to say, new additional challenges will arise as we actu-
ally build the combined system. However, we expect that
the foundational vision laid out in this report will be ade-
quate to guide the development of SMASH and help im-
prove mobile app testing in general.
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