
Exploring Word Representations on Time Expression Recognition

Sanxing Chen∗

China University of Geosciences
Beijing 100083, China

sc3hn@virginia.edu

Guoxin Wang, Börje Karlsson
Microsoft Research

Beijing 100080, China
{guow,borje.karlsson}@microsoft.com

Abstract

Time expression extraction has attracted long-
standing interest over time, due to its great im-
portance in many downstream tasks of Nat-
ural Language Processing (NLP) and Infor-
mation Retrieval (IR). Although current ap-
proaches, either rule-based or learning-based,
can achieve impressive performance in major
datasets, they usually rely heavily on hand-
crafted rules or task-specific pre-tagging fea-
tures. Recent advances in pretrained word
representations motivate us to explore semi-
supervised approaches for this task. We first
show that simple neural architectures built on
top of pre-trained word representations per-
form competitively and efficiently on time ex-
pression recognition. Then we further explore
several design choices focusing on the need
of contextualization and the training resource
requirements for this type of time expression
taggers.

1 Introduction

Time expressions play an important role in human
languages. Many time-aware NLP tasks such as
question answering (Llorens et al., 2015), textual
entailment (Wang and Zhang, 2008), summariza-
tion (Aramaki et al., 2009), usually require the
ability to deal with time information in text.

As a long established field, researchers have
long discovered that time expressions are usually
formed by a limited number of words in a loose
structure. Thus many rule-based systems have
been proved to be able to solve a large part of this
task. Unfortunately, those rule-based approaches
are neither computational efficient by design nor
capable to deal with some vague or ambiguous
cases. Even though some learning-based or hy-
brid systems are proposed to solve these problems
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by leveraging statistic information from the train-
ing corpus, they still heavily rely on some hand-
engineered patterns for deterministic matching or
token types pre-tagging, which makes it difficult
to scale to other domains or languages. Moreover,
they are not intelligent enough to recognize time
expressions in difficult contexts due to the limited
information provided by syntactic or lexical fea-
tures. For example, the word Fall has two abso-
lute different meanings in the phrases “Siege and
Fall of Port Arthur” and “Spring and Fall of Port
Arthur”.1 Specifically, the later one should be rec-
ognize as a time expression, but the two meanings
cannot be disambiguated by either syntactic fea-
tures or un-contextualized word sense.

In this paper, we explore neural time expres-
sion tagging models based on two kinds of pre-
trained word representations. Our work is moti-
vated by two intuitions. First, since word repre-
sentations are pre-trained on large corpora, they
can generate informative representations without
being influenced by the small corpus size, thus the
model doesn’t require any task-specific features
and might be more reliable under low-resource
conditions. Second, contextual word representa-
tions are designed to capture different word senses
depending on the context in which they are lo-
cated, so they could distinguish time expressions
from complex contexts.

We summarize the our contributions as follows:

• We adopt neural network models using word
representations in time expression recogni-
tion. Experiments on simple neural archi-
tectures with contextual word representations
show state-of-the-art performance on stan-
dard benchmarks.

• We further conduct experiments to probe the
1This example is cited from the WikiWars dataset (Mazur

and Dale, 2010)



need for contextual information in neural
time expression taggers. Our empirical ob-
servations confirm our intuitions and offer in-
sight for future model design.

2 Related Work

Since TempEval-2 (Pustejovsky et al., 2009) ini-
tially introduce a shared task of determining the
extent of the time expressions in text, a se-
ries of TempEval shared tasks (UzZaman et al.,
2013; Bethard et al., 2015, 2016, 2017) have been
launched and attracted great research interest.

2.1 Rule-based Approaches

Rule-based approaches usually use deterministic
rules for matching. SUTIME (Chang and Man-
ning, 2012) designs three types of rules, i.e., text
regexes, compositional rules and filtering rules
to form a 3-layered temporal pattern language.
In addition to serving as a critical component in
the Stanford CoreNLP library (Manning et al.,
2014), its text regexes for time token matching are
adopted by lots of later proposed methods (Zhong
and Cambria, 2018; Ding et al., 2019). Another
rule-based system, Syntime (Zhong et al., 2017),
designs heuristic rules on top of a fine-grained to-
ken type system. Other sophisticated rule-based
systems are also widely available, such as the
Recognizers-Text 2 which supports time expres-
sion recognition in a multi-lingual setting.

2.2 Learning-based Approaches

Because of the small size of commonly used cor-
pus, learning-based approaches often require the
use of hand-crafted features to exploit human in-
sights into the problem.

Zhong and Cambria (2018) use a conditional
random field model trained to model time expres-
sion under a task-specific constituent-based tag-
ging scheme named TOMN. The model is fed by
carefully designed features, i.e., regular expres-
sion pre-tags and lemma features. Ding et al.
(2019) use an Extended Budgeted Maximum Cov-
erage model to learn to select patterns which are
automatically generated from training text. How-
ever, they still need to manually design a fine-
grained token type system to pre-tag input text. In
addition, their method cannot utilizes the contex-
tual information for disambiguation, resulting in

2https://github.com/microsoft/Recognizers-Text

a gap between their model performance and other
approaches on the TempEval-3 dataset.

2.3 Neural Network Approaches

Recent advances in deep learning algorithms re-
veal that neural networks can learn good repre-
sentations from input distributions (Bengio et al.,
2003; Mikolov et al., 2013). But only limited ef-
fort have been put into neural approaches for this
task.

Olex et al. (2018) use neural networks as a
small component to disambiguate two entity types
“Period” and “Calendar-Interval” with contextual
information in their temporal expression normal-
ization system. Etcheverry and Wonsever (2017)
conduct experiments on mainly Spanish time ex-
pression recognition by using neural networks and
word embeddings. They show that distributed
word representations can capture time information
to some extent. They also conduct experiments
to explore the architectures choosing on this task.
The performance of their proposed models is infe-
rior to a rule-based system HeidelTime (Strötgen
and Gertz, 2010) by a large margin. Note that with
the progress of research in this field, many current
state-of-the-art systems have now surpassed Hei-
delTime a lot.

3 Models

In this section, we provide a brief description of
BERT and present the models used in our experi-
ments.

BERT (Devlin et al., 2018) stands for
Bidirectional Encoder Representations from
Transformers. In contrast to some previous
proposed language model pre-training approaches
like OpenAI GPT (Radford et al., 2018), BERT
explicitly models the context from both directions,
which is arguably important to token-level tasks
such as named entity recognition (NER) (Sang
and De Meulder, 2003) and SQuAD question
answering (Rajpurkar et al., 2016).

3.1 BERT-based Tagging Models

We use the BERT-Base model (cased, 12-layer,
768-hidden, 12-heads, 110M parameters) with a
single layer linear classifier on top of it. Follow-
ing the advice for token tagging task in the origi-
nal paper, we first tokenize the input sentence us-
ing WordPiece tokenizer and feed the hidden state
of the first sub-token to the classifier. The clas-



Datasets Timex Systems
Strict Match Relaxed Match

Pr. Re. F1 Pr. Re. F1

TE-3

SynTime 91.43 92.75 92.09 94.29 95.65 94.96
TOMN 92.59 90.58 91.58 95.56 93.48 94.51
PTime 85.19 83.33 84.25 92.59 90.58 91.58
BERT (Fine-tune) 92.48 89.13 90.77 96.24 92.75 94.46

WikiWars

SynTime 80.00 80.22 80.11 92.16 92.41 92.29
TOMN 84.57 80.48 82.47 96.23 92.35 94.25
PTime 86.86 87.57 87.21 95.98 96.76 96.37
BERT (Fine-tune) 95.46 96.60 96.03 98.24 99.41 98.82

Tweets

SynTime 89.52 94.07 91.74 93.55 98.31 95.87
TOMN 90.69 94.51 92.56 93.52 97.47 95.45
PTime 92.92 94.09 93.50 97.92 99.16 98.53
BERT (Fine-tune) 92.21 94.94 93.56 95.08 97.89 96.47

Table 1: Performance of our proposed methods compared with state-of-the-art systems on three benchmark
datasets. Statistic of previous systems are cited from their original papers. The best-performing system is bolded.

sification layer outputs a type prediction for each
input token under the standard B(egin), I(nside),
and O(utside) labeling scheme. We fine-tune the
entire model on the training corpus to predict to-
ken types.

4 Experiments

Evaluation Metric. We report precision, recall
and F1 measure in both strict match and relaxed
match. Results are averaged over 5 random seeds.
Datasets. We evaluate our model on a collec-
tion of three commonly used datasets, i.e., Time-
Bank (Pustejovsky et al., 2003), the WikiWars
(Mazur and Dale, 2010) and the Tweets (Zhong
et al., 2017). TimeBank and WikiWars are both
formal text corpus, while Tweets consists of infor-
mal texts crawled from the web. Texts in Time-
Bank lie in news domain, while WikiWars con-
tains 22 documents from English Wikipedia that
describe the historical course of wars.

Dataset Docs Words Timex
TimeBank (train) 183 61,418 1,243
TempEval-3 (test) 20 6,375 138
WikiWars (train) 17 98,746 2,228
WikiWars (test) 5 19,052 363
Tweets (all) 942 18,199 1,127

Table 2: Dataset statistics

For the purpose of fair comparisons, we strictly
follow the same data splitting strategy used in
previous works (Zhong and Cambria, 2018; Ding
et al., 2019). For TimeBank, we use TimeBank

1.2 corpus3 for training and TempEval-3 Plat-
inum (UzZaman et al., 2013) dataset for testing.
The statistics of all these datasets are listed in Ta-
ble 2.
Comparison Systems. We list three baseline sys-
tems (i.e., SynTime, TOMN and PTime) which
cover all the state-of-the-art results on the three
datasets mentioned before.
Implementation Details. According to BERT’s
advice on doing sequence tagging task, we use a
dropout probability of 0.1 on the representation
output layer. We use a batch size of 16 for 8
epochs and Adam (lr=5e-5) for model optimiza-
tion. Hyper-parameters are chosen by grid search-
ing on a development set.
Benchmark Results. The results show that the
BERT-based model is comparable to state-of-
the-art systems on both TempEval-3 and Tweets
datasets. On Wikiwars, our model outperforms the
previous state-of-the-art by a large margin, which
establishes a new state-of-the-art result. It im-
proves the strict match F1 by 8.82%, and the re-
laxed match F1 by 2.45%.

5 Understanding Representations

Even if we know fine-tuning BERT can achieve
great results, we’re still unclear about how word
representations benefit our model and what’s the
essential neural architecture which is sufficient for
this task. So we further conduct several prob-
ing experiments by using BERT as a pure fea-
ture extractor (that means we freeze all param-

3See corpus LDC2006T08 in the LDC catalogue



Probing Models Strict F1 Relaxed F1

GloVe

Linear 16.90±.30 78.51±.21
MLP 16.14±.62 81.52±.23
LSTM 43.36±.90 84.68±.94
BiLSTM+MLP 83.85±.44 93.14±.22

BERT

Linear 75.24±.45 88.50±.15
MLP 87.18±.85 94.95±.35
LSTM 91.10±.42 95.62±.20
BiLSTM+MLP 93.24±.30 96.54±.34

BERT Fine-tune 96.03±.35 98.82±.26

Table 3: Results of probing experiments on WikiWars.

eters of BERT during training) and additionally
use GloVe (Pennington et al., 2014) as an repre-
sentative uncontextualized word representations to
compared with.

We feed the features extracted from these two
representations into three different neural models,
i.e., a linear model, a LSTM (single layer with
200 hidden units) model, a multilayer perceptron
(MLP: a single 1000d hidden layer activated by
ReLU) and a full-featured model with both Bi-
LSTM layers and MLP. The LSTM model can
be seen as a task-specific contextualizer while the
MLP model can be seen as additional parameters
and nonlinearity. The two models have nearly the
same number of parameters.4

We choose to perform this suite of experiments
on the WikiWars dataset because TempEval-3 has
significant fewer testing data which leads to insta-
bility in testing and using the Tweets dataset intro-
duces domain inconsistency.

5.1 Results and Discussion

Table 3 presents the performance of BERT-based
and GloVe-based probing models. In GloVe-
based models, there is always a big gap between
strict and relaxed matching scores. The relaxed
matching score can be seen as a measurement of
the model’s capability to find time expressions
from texts, while the strict matching measure-
ment requires the model to correctly distinguish
the boundary of time expressions. Actually, most
time expressions contain time tokens which can
be recognized by itself, so both simple rule-based
systems and non-contextual word representation
can do relax matching. But strict matching cares
about the boundary which is usually composed by
general modifier tokens and numeral tokens in a
loose structure (Zhong and Cambria, 2018), so it

4We refer to the experiments setup in Liu et al. (2019).

requires more contextual information.
From the results of BERT-based models, We

find that the additional parameters from LSTM
and MLP models can significantly improve the lin-
ear baseline. It reveals that the model needs a min-
imal structure to learn task-specific knowledge.
Given that the results from GloVe have already
proved the necessity of contextual information in
this task, comparisons between LSTM and MLP
models suggest that BERT-based models rely less
on additional contextual information.

The results also show that the performance of
the full-featured model is comparable to fine-
tuned BERT model. We suspect adding more pa-
rameters of the network would be sufficient to fill
the small gap.

5.2 Resource Experiment

0 20 40 60 80 100
Data proportion (%)

0

20

40

60

80

100

F1
 m

ea
su

re
m
en

t (
%
)

Finetune Strict Match
Finetune Relaxed Match
BiLSTM+MLP Strict Match
BiLSTM+MLP Relaxed Match

Figure 1: Performance of BERT (Fine-tune) and
BERT-BiLSTM-MLP in a simulated resource-poor
setup.

In order to figure out how much training re-
source do neural models really need in this task,
we simulate a low-resource scenario in which we
gradually increase the amount of training resource.
We also conduct this experiment on the WikiWars
dataset. The results in Figure 1 show that BERT-
based taggers can actually learn very well even if
very little data are provided.

6 Conclusion

We study word representations based neural mod-
els on time expression recognition. The results of
our experiments show that neural approaches are
competitive in this task, even under low-resource
conditions. In addition, fine-tuning a contextual-
izer BERT can establish a new state-of-the-art in



one commonly used dataset. We further probe the
need of contextual information in this task, the re-
sults confirm our intuitions.
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